PREPOSE: Privacy, Security, and Reliability for
Gesture-Based Programming

Lucas Silva Figueiredo*, David Molnarf, Margus Veanes', and Benjamin Livshits'

Federal University of Pernambuco*

Microsoft Research'

Abstract—With the rise of sensors such as the Microsoft Kinect, Leap
Motion, and hand motion sensors in phones (i.e., Samsung Galaxy S6),
gesture-based interfaces have become practical. Unfortunately, today,
to recognize such gestures, applications must have access to depth and
video of the user, exposing sensitive data about the user and her environ-
ment. Besides these privacy concerns, there are also security threats in
sensor-based applications, such as multiple applications registering the
same gesture, leading to a conflict (akin to Clickjacking on the web).

We address these security and privacy threats with PREPOSE, a novel
domain-specific language (DSL) for easily building gesture recognizers,
combined with a system architecture that protects privacy, security, and
reliability with untrusted applications. We run PREPOSE code in a trusted
core, and only return specific gesture events to applications. PREPOSE
is specifically designed to enable precise and sound static analysis using
SMT solvers, allowing the system to check security and reliability
properties before running a gesture recognizer. We demonstrate that
PREPOSE is expressive by creating a total of 28 gestures in three
representative domains: physical therapy, tai-chi, and ballet. We further
show that runtime gesture matching in PREPOSE is fast, creating no
noticeable lag, as measured on traces from Microsoft Kinect runs.

To show that gesture checking at the time of submission to a gesture
store is fast, we developed a total of four Z3-based static analyses to
test for basic gesture safety and internal validity, to make sure the so-
called protected gestures are not overridden, and to check inter-gesture
conflicts. Our static analysis scales well in practice: safety checking
is under 0.5 seconds per gesture; average validity checking time is
only 188 ms; lastly, for 97% of the cases, the conflict detection time
is below 5 seconds, with only one query taking longer than 15 seconds.

1 Introduction

Over 20 million Kinect sensors are in use today, bringing
millions of people in contact with games and other applica-
tions that respond to voice and gestures. Other companies
such as Leap Motion and Prime Sense are bringing low-
cost depth and gesture sensing to consumer electronics.
The newest generation of smart phones such as Samsung
Galaxy S5 supports rudimentary gestures as well.

Context of prior work: The security and privacy com-
munity is starting to pay attention to concerns created by
the emergence of these technologies. Specifically, we have
seen several proposals on the intersection of augmented
reality, privacy, and security. D’Antoni et al. [8] provides a
high-level overview of the problem space. Darkly [16], like
our work, puts a layer between the untrusted application
and raw sensor data. Unlike us, Darkly lacks a formal
semantics and does not allow precise reasoning about ap-
plication properties. Jana et al. [15] introduces the notion

of an OS abstraction called a recognizer which enables
gesture detection. Yet their approach fails to provide a
way to extend the system with new recognizers in a safe
manner. SurroundWeb [34] demonstrates what a 3D web
browser modified with new abstractions for input and
output to protect privacy and security would look like. Yet
it also lacks the capacity for precise automatic reasoning.
We are also inspired by world-drive access control [30],
which attempts to restrict applications from accessing
sensitive objects in the environment. Lastly, Proton [19]
is an example of defining a higher-level abstraction for
gestures that enables precise reasoning.

1.1 Background

User demand for sensors such as Kinect is driven by
exciting new applications, ranging from immersive Xbox
games to purpose-built shopping solutions to healthcare
applications for monitoring elders. Each of these sensors
comes with an SDK which allows third-party developers
to build new and compelling applications. Several devices
such as Microsoft Kinect and Leap Motion use the App
Store model to deliver software to the end-user. Examples
of such stores include Leap Motion’s Airspace airspace.
com, Oculus Platform, and Google Glassware http://
glass—apps.org.

These platforms will evolve to support multiple un-
trusted applications provided by third parties, running
on top of a trusted core such as an operating system.
Since such applications are likely to be distributed through
centralized App stores, there is a chance for application
analysis and enforcement of key safety properties. Below
we describe some of the specific threats posed by applica-
tions to each other and to the user. We refer the reader
to D’Antoni [8] for a more comprehensive discussion of
threats. To address these threats, we introduce PREPOSE,
a novel domain specific language and runtime for writing
gesture recognizers. We designed this language with se-
mantics in terms of SMT formulas. This allows us to use
the state of the art SMT solver Z3 both for static analysis
and for runtime matching of gestures to user movements.

1.2 A Case for Controlled Access to Skeletal Data

There is a natural trade-off between the platform func-
tionality provided to potentially untrusted applications

and possible threats to the end-user. We take a two-
pronged approach to deliver a degree of security, privacy,
and reliability. Privacy is achieved through the use of a
domain-specific language PREPOSE, whereas security and
reliability are both achieved through the use of sound
static analysis. By combining system design and sound
static analysis, PREPOSE improves the security, privacy,
and reliability properties of gesture programming. We
discuss privacy-related issues in this section and security
and reliability in Section 1.3.

PREPOSE raises the privacy bar, keeping in mind that
perfect privacy is elusive. The degree to which end-users
are comfortable with privacy disclosure varies considerably
as well. Therefore it is important to analyze different
points in the design space for untrusted applications that
use gesture recognition.

Figure 1 summarizes three different levels of function-
ality for untrusted applications that need gesture recog-
nition. On the bottom, applications can be written in
languages such as C++ and have access to raw video and
depth. Access to the raw video stream is seen as highly
privacy-sensitive [15,34]. In the middle, applications are
written in memory-safe languages such as C# or Java
and have access only to the skeleton API provided by
Kinect for Windows. What is less obvious is that at the
middle level, the skeleton data also leads to potential loss
of privacy. Specifically, the following attacks are possible

o The skeleton API reveals how many people are in the
room. This may reveal whether the person is alone
or not. If alone, perhaps she is a target for robbery;
if she’s found to be not alone, that may reveal that
she’s involved with someone illicitly.

o The skeleton API reveals the person’s height (relative
height of joints is exposed, and the Kinect API allows

(cor*\"ds
s
(dfe l'y

Prepose
and
application logic

< fingerprinting users

g xext
‘ eadmﬁ’;oﬂ meds
\a\oe\S
sensitive

private
images

C# and skeletal data

C++ and raw data

Fig. 1: Three different levels of data access for untrusted applica-
tions that perform gesture recognition. We call out threats to the
user at each levels.

Category Property Description

Reliability gesture safety validates that gestures have a basic
measure of physical safety, i.e. do
not require the user to overextend
herself physically in ways that may

be dangerous.

checks for inner contradictions i.e.
do not require the user to both keep
her arms up and down.

Reliability inner validity

Security protected gestures tests whether a gesture conflicts
with a reserved system-wide gesture
such as the Kinect attention gesture
(http://bit.1ly/1J1Xk79).

Security conflicts finds potential conflicts within a set

of gestures such as two gestures that
would both be recognized from the
same user movements.

Fig. 2: Properties statically checked by PREPOSE. The first two
properties are reliability properties which aid gesture developers. The
second two are security properties that prevent untrusted applica-
tions from conflicting with the OS or with other applications.

mapping from skeleton points to depth space so actual
height as well). The application could distinguish
people by “fingerprinting” skeletons.

o The skeleton API reveals fine grained position of the
person’s hands. The application can in principle learn
something about what they write if they write on a
whiteboard, for example.

1.3 Static Analysis for Security & Reliability

At the heart of PREPOSE is the idea of compiling gesture
descriptions to formulae for an SMT solver such as Z3 [26].
These formulae capture the semantics of the gestures,
enabling precise analyses that boil down to satisfiability
queries to the SMT solver. The PREPOSE language has
been designed to be both expressive enough to support
complex gestures, yet restrictive enough to ensure that
key properties remain decidable. In this paper we focus on
the four properties summarized in Figure 2 and detailed in
Section 3.4. Note that a gesture-based application written
in C++ or Java would generally require an extensive
manual audit to ensure the lack of privacy leaks and
security flaws.

1.4 Threat Model

PREPOSE, at the top of the pyramid in Figure 1, provides
the next layer of privacy by mediating direct access to
the skeleton API. While the threats emanating from raw
video access and skeleton access are eliminated by design,
in PREPOSE we worry about higher-level properties such
as inter-gesture conflicts and gesture safety.

This is akin to how programming in a memory-safe
language allows one to focus on enforcing semantic security
properties without worrying about buffer overruns. As a
matter of security and privacy in depth, PREPOSE is at
the higher level within the pyramid, following the classic
security principle of least privilege.

As is often the case with privacy mechanisms, there are
some side channels that are harder to protect from. In

GESTURE crossover-left-arm-stretch:
POSE relax-arms:
point your left arm down,
point your right arm down.

POSE stretch:
rotate your left arm 90 degrees counter
clockwise on the frontal plane,
touch your left elbow with your right hand.

EXECUTION:
relax-arms,
slowly stretch and hold for 30 seconds.

Fig. 3: Gesture example: crossover-left-arm-stretch. A gesture
is composed of a sequence of poses. The gesture is completed if the
poses are matched in the sequence specified in the EXECUTION block.

our scenario, PREPOSE does not directly protect against
tracking the user by learning which gestures they can
perform (only some users are capable of certain gestures)
or whether, for example, their house is big enough by
testing if the user is able to perform gestures that require
a greater freedom of movement.

While we do not to attempt to catalog all the possible
attacks that may emerge [8], relying on PREPOSE gives us
confidence that untrusted applications can do less harm
than if they had additional capabilities (lower within the
pyramid).

1.5 Prepose Architecture

The trusted core of PREPOSE enforces privacy by me-
diating between applications and the raw sensor data.
Inter-application conflicts and unsafe gestures are avoided
through static analysis powered by the Z3 SMT solver.
Figure 4 shows our architecture and the security boundary
we draw.

Gesture store: We are also inspired by App Stores for
developer components, such as the Unity 3D Asset store
which offers developers the ability to buy models, object,
and other similar components (https://www.assetstore.
unity3d.com). Today, when developers write their own ges-
ture recognizers from scratch, they use machine learning
methods, or libraries from github and sourceforge. Our
focus in this paper is on gesture recognizers, which are
integral components of AR applications responsible for
detecting gestures performed by users.

As in the case of mobile apps, the App Store central-
ized distribution model provides a unique opportunity to
ensure the security and privacy of gestures before they are
unleashed on unsuspecting users. As such, our approach
in PREPOSE is to check gestures when they are submitted
to the gesture store.

Figure 5 summarizes our approach. Developers write
gesture recognizers in a high-level domain-specific lan-
guage, PREPOSE, then submit them to the gesture store.
Because our domain-specific language has been carefully
engineered, we can perform precise and sound static anal-
yses for a range of security and privacy properties. The re-
sults of this analysis tell us whether the submitted gesture
is “definitely OK,” “definitely not OK,” or, as may happen

Trust
boundary

Prepose Code
Prepose

|

1

|

Co— !
interpreter |

1

|

1

|

Skeleton and
runtime

Gesture Events
MSR Z3

constraint
solver

Fig. 4: Security architecture of PREPOSE.

occasionally, “needs attention from a human auditor.” In
our experiments in Section 5, we encountered only one
case of reasoning needing attention. A reasonable approach
would be to reject submissions that do not qualify as
“definitely OK.”

Improving gesture authoring experience: In addi-
tion to addressing threats from untrusted applications, a
language-based approach can improve gesture authoring.
Gestures are an integral part of sensor-based always-on
application, the equivalent of Ul events like left mouse
click, double-click, etc. in regular applications®. While, for
instance, the Kinect SDK already includes a number of
default gestures, developers typically need to add their
own. Different applications often require different sets of
gestures, and, as such, building new gestures is a funda-
mental part of software development.

Gesture development is a tricky process, which often
depends on machine learning techniques requiring large
volumes of training data [9]. These heavyweight meth-
ods are both expensive and time-consuming for many
developers, resulting in mostly large game studios being
able to afford gesture development. Therefore, making
gesture development easier would unlock the creativity of
a larger class of developers. PREPOSE aids this with sound
static analyses for reliability properties of gestures, such
as whether the gesture definition is self-contradictory.

PREPOSE language and runtime: This paper proposes
PREPOSE, a language and a runtime for authoring and
checking gesture-based applications. For illustration, a
code snippet supported by our system in shown in Fig-
ure 3. This code is translated into logical formulas which
are checked at runtime against the user’s actual positions
using an SMT solver.

PREPOSE is built as a library on top of the released
Kinect SDK. Applications link against this library. The
source code of PREPOSE is available on Github (URL omit-
ted for anonymity). PREPOSE lowers the cost of developing

ITo quote a blog entry: “After further experimenting with the
Kinect SDK, it became obvious what needed to come next. If you
were to create an application using the Kinect SDK, you will want to
be able to control the application using gestures (i.e. waving, swiping,
motions to access menus, etc.).” [32]

| —

[—
| —
| —

.app

Z3 theorem
prover

gesture file

static checking

triage

Fig. 5: Checking submissions to a gesture store. Submissions are marked as safe (green), unsafe (red), or need human attention (blue).

new gestures by exposing new primitives to developers
that can express a wide range of natural gestures.

Application domains implemented in PREPOSE: To
demonstrate the expressiveness of PREPOSE, we experi-
ment with three domains that involve different styles of
gestures: physical therapy, dance, and tai-chi. Given the
natural syntax of PREPOSE and a flat learning curve, we
believe that other domains can be added to the system
quite easily. For each of these gestures, we then performed
a series of analyses enabled by PREPOSE, including conflict
detection, as well as safety, security, and privacy checks.

Monitoring applications in PREPOSE: We discovered
that PREPOSE is particularly well-suited to what we call
monitoring applications which can be implemented with
PREPOSE gestures and a small amount of “bookkeeping”
code. For example, Kinect Sports includes a tai-chi trainer,
which instructs users to struck tai-chi poses and gives
real-time feedback on how well they do, which is easily
captured by PREPOSE and supported by the runtime we
have built. For another example, AtlasbD is a startup
that installs multiple sensors in the homes of seniors
and monitors seniors for any signs of a fall or another
emergency. Another example of such an application for
physical therapy is shown in Figure 8a or can be seen in a
video at http://reflexionhealth.com. These applications
can run, concurrently, for weeks on end, with only minimal
needs to report results (such as completing a certain level
within the tai-chi application) to an external server.

1.6 Contributions

Our paper makes the following contributions:

o Prepose. Proposes a programming language and a
runtime for a broad range of gesture-based immer-
sive applications designed from the ground up with
security and privacy in mind. PREPOSE follows the
principle of privacy by construction to eliminate the
majority of privacy attacks.

o Static analysis. We propose a set of static anal-
ysis algorithms designed to soundly find violations
of important security and reliability properties. This
analysis is designed to be run within a gesture App
Store to prevent malicious third-party applications
from affecting the end-user.

o Expressiveness. To show the expressiveness of PRE-
POSE, we encode 28 gestures for 3 useful application
domains: therapy, dance, and tai-chi.

o Performance evaluation. Despite being written in
a domain-specific language (DSL), PREPOSE-based
gesture applications pay a minimal price for the extra
security and privacy guarantees in runtime overhead;
tasks like pose matching take milliseconds. Our static
analysis scales well in practice: safety checking is un-
der 0.5 seconds per gesture; average validity checking
time is only 188 ms; lastly, for 97% of the cases, the
conflict detection time is below 5 seconds, with only
one query taking longer than 15 seconds.

We also to wish to point out that the PREPOSE project is
open-sourced at https://github.com/Microsoft/prepose.

1.7 Paper Organization

The rest of the paper is organized as follows. Section 2
provides some background on gesture authoring. Section 3
gives an overview of PREPOSE concepts and provides some
motivating examples. Section 4 describes our analysis for
security and privacy in detail. Section 5 contains the
details of our experimental evaluation. Sections 7 and 9
describe related work and conclude.

2 Background
2.1 Security and Privacy Threats in AR

Augmented reality (AR) is computing that overlays arti-
ficial objects on top of the human senses such that the
artificial and the real seamlessly blend together. Today,
shipping AR experiences come in form factors ranging
from “magic windows” on phones and tablets all the way
to high end headsets such as the Meta or the Microsoft
HoloLens that add visual and audio objects to the user’s
world.

An example of a magic window is Pokemon Go, which
became an overnight success by asking people to look
through their phones to capture Pokemon, while moving
around in the real world. For the headset, an example
application is the Microsoft Galaxy FExplorer, which lets
the wearer to “fly through” the solar system and beyond,
using eye gaze and gestures to pick out the next planet to
visit.

The rise of fast phone processors, ever-cheaper MEMS
gyroscopes, inertial sensing units, and advanced high-
speed video processing for object registration means that
AR capabilities, which used to cost hundreds of thousands
of dollars, are now available on commodity phones. Even

headsets have dropped to single thousands of dollars,
making them within reach for enthusiasts and specialized
commercial applications alike.

AR raises fundamental new challenges because, to work
properly, applications must continuously sense the envi-
ronment, and must overlay artificial objects on the real
world. In most AR applications, interaction is accom-
plished through gestures or other visual recognition, which
means that applications need some kind of access to
video streams or they cannot work. How can we support
untrusted applications, such as in a phone “app store”
model or the Web model with untrusted pages? How can
we prevent applications from maliciously “overwriting” real
world objects or misleading the user?

At the same time, AR has familiar challenges as well. For
example, applications may be written in game frameworks
such as Unity, which has a “component store” allowing
developers to buy new object recognition algorithms or
specific 3D models, as they are needed. This store has the
same tradeoffs as app stores on phones, game consoles, and
tablets: how can we enable as many people as possible to
sell components in the store, while still protecting the end-
user from malicious code? What are the right abstractions
and the right tradeoffs to strike? More generally, this is
the problem of safe extensions for a core platform. For
this paper, we focus on extensions that provide gesture
recognition, described more fully below, because gestures
are crucial for interacting with AR applications.

We now recap the existing single application model
common for augmented reality applications on today’s
platforms. Next we discuss the challenges with extending
this model to multiple untrusted applications in the same
system. Then we describe our approach and give the nec-
essary background on gesture programming to highlight
how our approach works for this context.

2.2 Single Application Programming Model

Today, common AR applications for phones, for the Xbox
game console, or for the Kinect sensor assume that a single
application has control of the machine at one time. The
application then typically includes a library that talks to
the hardware, runs object recognition, and then exposes
events to the application for processing. For example, a
Kinect for Windows application includes a library that
talks to the Kinect sensor, runs a machine learning model
to extract the locations of people in the Kinect’s field of
view, and finally sends an event with detected skeleton
positions to the application. A phone application may use
a toolkit such as Vuforia to recognize markers in the world,
or simply use location services to display relevant content,
as in Pokemon Go. The key aspect of this model is that
the application has complete control of the device.

2.3 Multiple Applications

Multiple applications sharing the same AR raise a host
of issues, as summarized by D’Antoni et al. [8]. Here,
we focus on the problem of safe extensions for gesture

recognition. When there are multiple programs, it is not
possible to give each one ezclusive access to sensor data,
such as a raw video or depth stream. Additionally, with
untrusted programs, such as those found in app stores
or on the Web, giving access to the raw sensor stream
would reveal private information about the user. Previous
work has addressed this by restricting access to only
recognizers, special operating system abstractions that
encapsulate object detection code [15]. The key downside
of this approach is that it requires a fixed set of recognizers
that cannot be changed by applications. For example, the
Xbox Kinect game “NBA Baller Beats” included code to
recognize a basketball bouncing up and down in time
to music, which was never originally envisioned by the
Kinect developers. For another example, the Windows
10 application platform for HoloLens as of August 2016
provides only a limited set of gestures for applications and
no way for developers to register new gesture recognizers.

2.4 Programming with Gestures

As AR systems grow, so too does the field of security
and privacy for these systems. We do not claim to solve
every problem in this paper. Rather, our approach is to
use a domain specific language that enables language-level
sandboxing and precise analyses. The time to explore such
approaches is now, while there is not yet a dominant AR
platform. Because gesture recognition is a key component
of these systems, we start there.

Today, developers of immersive, sensor-based applica-
tions pursue two major approaches to creating new gesture
recognizers. First, developers write code that explicitly
encodes the gesture’s movements in terms of the Kinect
Skeleton or other similar abstraction exposed by the plat-
form. Second, developers use machine learning approaches
to synthesize gesture recognition code from labeled exam-
ples. We discuss the pros and cons of each approach each
in turn.

Manually written: In this approach, the developer first
thinks carefully about the gesture movements in terms of
an abstraction exposed by the platform. For example, the
Kinect for Windows platform exposes a “skeleton” that
encodes a user’s joint positions. The developer then writes
custom code in a general-purpose programming language
such as C++ or C# that checks properties of the user’s
position and then sets a flag if the user moves in a way to
perform the gesture. For example, the Kinect for Windows
white paper on gesture development [20] contains code for
a simple punch gesture, shown in Figure 6.

// Punch Gesture

if (vHandPos.z-vShoulderPos.z>fThresholdl &&
fVelocityOfHand > fThreshold2 ||
fVelocityOfElbow > fThreshold3 &&
DotProduct (vUpperArm, vLowerArm) > fThreshold4)

bDetect = TRUE;

Fig. 6: A simple punch gesture.

The code checks that the user’s hand is “far enough”
away from the shoulder, that the hand is moving “fast
enough,” that the elbow is also moving “fast enough,” and
that the angle between the upper and lower arm is greater
than a threshold. If all these checks pass, the code signals
that a punch gesture has been detected.

Manually-written poses require no special tools, data
collection, or training, which makes them easy to start
with. Unfortunately, they also have significant drawbacks.

o First, the code is hard to understand because it
typically reasons about user movements at a low level.
For example, the code uses a dot-product to check the
angle between the lower and upper arm instead of an
abstraction that directly returns the angle.

e Second, building these gestures requires a trained
programmer and maintaining code requires manually
tweaking threshold values, which may or may not
work well for a wider range of users. Third, it is
difficult to statically analyze this code because it is
written in a general purpose programming language,
so gesture conflicts or unsafe gestures must be de-
tected at runtime.

o Finally, the manually coded gesture approach requires
the application to have access to sensor data for the
purpose of recognizing gestures. This raises privacy
problems, as we have discussed: a malicious devel-
oper may directly embed some code to capture video
stream or skeleton data to send it to http://evil.com.

Machine learning: The leading alternative to manually-
coded gesture recognizers is to use machine learning ap-
proaches. In machine learning approaches, the developer
first creates a training set consisting of videos of people
performing the gesture. The developer then labels the
videos with which frames and which portions of the depth
or RGB data in the frame correspond to the gesture’s
movements.

Finally, the developer runs an existing machine learning
algorithm, such as AdaBoost, to synthesize gesture recog-
nition code that can be included in a program. Figure 7
shows the overall workflow for the Visual Gesture Builder,
a machine learning gesture tool that ships with the Kinect
for Windows SDK.

The developer takes recordings of many different people
performing the same gesture, then tags the recordings to
provide labeled data. From the labeled data, the developer
synthesizes a classifier for the gesture. The classifier runs
as a library in the application.

Machine learning approaches have important benefits
compared to manually-written poses. If the training set
contains a diverse group of users, such as users of different
sizes and ages, the machine learning algorithm can “auto-
matically” discover how to detect the gesture for different
users without manual tweaking. In addition, improving the
gesture recognition becomes a problem of data acquisition
and labeling, instead of requiring manual tweaking by a
trained programmer. As a result, many Kinect developers

today use machine learning approaches.

On the other hand, machine learning has drawbacks as
well. Gathering the data and labeling it can be expensive,
especially if the developer wants a wide range of people in
the training set. Training itself requires setting multiple
parameters, where proper settings require familiarity with
the machine learning approach used. The resulting code
created by machine learning may be difficult to interpret
or manually “tweak” to create new gestures. Finally, just
as with manually written gestures, the resulting code is
even more difficult to analyze automatically and requires
access to sensor data to work properly.

3 Overview

We first show a motivating example in Section 3.1. Next,
we discuss the architecture of PREPOSE and how it pro-
vides security and privacy benefits (3.2). We then intro-
duce basic concepts of the PREPOSE language and discuss
its runtime execution (3.3). Finally, we discuss the security
and privacy issues raised by an App Store for gestures, and
show how static analysis can address them (3.4).

3.1 Motivating Example

Existing application on Kinect: Figure 8a shows a
screen shot from the Reflexion Health physical therapy
product. The reader is strongly encouraged to watch the
video at http://reflexionhealth.com for more context.
Here, a Kinect for Windows is pointed at the user. An
on-screen animation demonstrates a target gesture for the
user. Along the top of the screen, the application gives
an English description of the gesture. Also on screen is
an outline that tracks the user’s actual position, enabling
the user to compare against the model. Along the top,
the program also gives feedback in English about what
movements the user must make to properly perform the
therapy gesture.

Reflexion is an example of a broader class of trainer
applications that continually monitor a user and give
feedback on the user’s progress toward gestures. The key
point is that trainer applications all need to continuously
monitor the user’s position to judge how well the user
performs a gesture. This monitoring is explicit in Reflexion
Health, but in other settings, such as AtlasbD’s eldercare,
the monitoring may be implicit and multiple gestures may
be tracked at once.

Encoding existing poses: We now drill down into an
example to show how applications can encode gesture
recognizers using the PREPOSE approach. Figure 8b shows
a common ballet pose, taken from an instructional book on
ballet. The illustration is accompanied by text describing
the pose. The text states in words that ankles should be
crossed, that arms should be bent at a certain angle, and
SO on.

Gestures in PREPOSE: Figure 8 shows the PREPOSE code
which captures the ballet pose. Because of the way we
have designed the PREPOSE language, this code is close to

Rinse and repeat

Preview gestures with VGBView

Your application

Gesture”

Record raw IR clips with Kinect Studio

U Convert clips using KSConvert

@ e “n

e e e

VisualGestureBuilderframeSource®
VisualGestureBuilderframeReader”
DiscreteGestureResult”

==

Detect gestures in your application

Tag gestures using VGB

4

Build and analyze gestures using VGB

Fig. 7: Workflow for machine-learning based gesture recognition creation in the Kinect Visual Gesture Builder [20].

the English description of the ballet pose. A ballet trainer
application would include this code, which is then sent to
the PREPOSE runtime for interpretation.

3.2 Architectural Goals

Figure 4 shows the architecture of PREPOSE. Multiple
applications run concurrently. Each application has one
or more gestures written in the PREPOSE language. These
applications are not trusted and do not have access to
raw sensor data. Instead, applications register their gesture
code with a trusted PREPOSE runtime. This runtime is
responsible for interpreting the gestures given access to
raw depth, video, or other data about the user’s position.
When a gesture is recognized, the runtime calls back to
the application which registered the gesture.

We draw a security boundary between the trusted
component and untrusted applications. Only PREPOSE
code crosses this boundary from untrusted applications to
trusted components. In our implementation, the trusted
component is written in managed C#, which makes it
difficult for an untrusted application to cause a memory
safety error. Our design therefore provides assurance that
untrusted applications will not be able to access private
sensor data directly, while still being able to define new
gesture recognizers.

PREPOSE has been designed for analyzability. Develop-
ers submit code written in the PREPOSE language to a
gesture App Store. During submission, we can afford to
spend significant time (say, an hour or two) on performing
static analyses. We now describe the specific security and
privacy properties we support, along with the analyses
needed to check them.

3.3 Basic Concepts in Prepose

In contrast to the approaches above, PREPOSE defines a
domain specific language for writing gesture recognizers.
The basic unit of the PREPOSE language is the pose. A
pose may contain transformations that specify the target
position of the user explicitly, or it may contain restric-
tions that specify a range of allowed positions. A pose
composes these transformations and restrictions to specify
a function that takes a body position and decides if the
position matches the pose. At runtime, PREPOSE applies
this function to determine if the user’s current body
position matches the pose. For poses that consist solely of
transformations, PREPOSE also at runtime synthesizes a
target position for the user, enabling PREPOSE to measure
how close the user is to matching the pose and provide
real time feedback to the user on how to match the pose.

A gesture specifies a sequence of poses. The user must
match each pose in the sequence provided. The gesture is
said to match when the last pose in the sequence matches.
At runtime, PREPOSE checks the user’s body position to
see if it matches the current pose.

In our current implementation, PREPOSE poses and
gestures are written in terms of the Kinect skeleton. The
Kinect skeleton is a collection of body joints, which are
distinguished points in a three-dimensional coordinate
space that correspond to the physical location of the user’s
head, left and right arms, and other body parts. Our
approach, however, could be generalized to other methods
of sensing gestures. For example, the Leap Motion hand
sensor exposes a “hand skeleton” to developers and we
could adapt the PREPOSE runtime to work with Leap
Motion or other hand sensors.

Raise your left leg to the side and return
You need to keep your left leg straight.

(a) A physical therapy application. On the right, the appli-
cation displays the user’s current position. Along the top, the
application describes the gesture the user must perform.

(b) Ballet poses.

GESTURE fourth-position-en-avant:
POSE cross-legs-one-behind-the-other:
put your left ankle behind your right ankle,
put your left ankle to the right
of your right ankle.
// do not connect your ankles.

POSE high-arc-arms-to-right:
point your arms down,
rotate your right arm 70 degrees up,
rotate your left elbow 20 degrees to
rotate your left wrist 25 degrees to

your left,
your right.

EXECUTION:
// fourth-position-en-avant-composed
stand-straight,
point-feet-out,
stretch-legs,
cross-legs-one-behind-the-other,
high-arc-arms-to-right.

(c) A sample ballet gesture written in PREPOSE.
The gesture defines two poses, which are spec-
ifications of a body position. Then, the gesture
execution specifies the sequence of poses that must
be matched to perform the gesture.

Fig. 8: Motivating example.

Poses: A pose contains either transformations or re-
strictions. A transformation is a function that takes as
input a Kinect skeleton and returns a Kinect skeleton.
Transformations in PREPOSE include “rotate” and “point”,
as in this example PREPOSE code:

rotate your left wrist 30 degrees to the front

rotate your right wrist 30 degrees to the front
point your right hand up

In the first line, the transformation “rotate” takes as
arguments the name of the user skeleton joint “left wrist,”
the amount of rotation “30 degrees,” and the direction

~

PREPOSE put your arms down

public static BodyTransform ArmsDownTransform() { ‘\\
return new BodyTransform()

CH .Compose (JointType.ElbowLeft, new Direction(@, -1, ©))
.Compose (JointType.WristLeft, new Direction(@, -1, @))
.Compose(JointType.ElbowRight, new Direction(®, -1, ©))
.Compose (JointType.WristRight, new Direction(@, -1, 0));

joints[‘elbow left’].Y > -1 A \
Z3 joints[‘elbow left’].X = @0 A
joints[‘elbow left’].Z = ©

Fig. 9: Runtime correspondence: PREPOSE, C#, and Z3.

of rotation. The second line is similar. The third line
is a transformation “point” that takes as arguments the
name of a user skeleton joint and a direction “up.” When
applied to a skeleton position, the effect of all three
transformations is to come up with a single new target
skeleton for the user.

A restriction is a function that takes as input a Kinect
skeleton, checks if the skeleton falls within a range of
allowed positions, and then returns true or false. An
example restriction in PREPOSE looks like this:

put your right hand on your head

The intuition here is that “on your head” is a restriction
because it does not explicitly specify a single position.
Instead, a range of allowed positions, namely those there
the hand is within a threshold distance from the head, is
denoted by this function. Here, the function “put” takes
as arguments two joints, the “right hand” and the “head.”
The function returns true if the right hand is less than
a threshold distance from the head and false otherwise.
Poses can incorporate multiple transformations and mul-
tiple restrictions. The pose matches if all restrictions are
true and the user’s body position is also closer than a
threshold to the target position.

Gestures: Gestures consist of zero or more pose declara-
tions, followed by an ezxecution sequence. For example, a
))
gesture for doing “the wave” might contain the following:
EXECUTION :
point-hands-up,

point-hands-forward,
point-hands-down.

That is, to do “the wave,” the user needs to put her hands
up, then move her hands from there to pointing forward,
and then finally point her hands downward. The gesture
matches when the user successfully reaches the end of the
execution sequence.

Our PREPOSE runtime allows multiple gestures to be
loaded at a time. The execution sequence of a gesture can
use any pose defined by any loaded gesture, which allows
developers to build libraries of poses that can be shared
by different gestures.

Runtime execution: Figure 9 shows the stages of run-
time processing in PREPOSE. A high-level PREPOSE state-
ment is compiled into C# code, which in turn defines

an SMT formula. The formula is used both for runtime
matching and static analysis.

3.4 Gesture Security and Reliability

At gesture submission time, we apply static analysis to
the submitted PREPOSE program. This analysis can be
performed within the App store before the user is allowed
to download a new application that contains gestures.
Conflict checking may also be done as information about
which applications are installed is already available to the
App store. Conceivably, the analysis may be done on the
client as well. The results of this analysis tell us whether
the submitted gesture is “definitely OK,” “definitely not
OK,” or, as may happen occasionally, “needs attention
from a human auditor.” This kind of triage is fairly typical
in the App store context.

We currently perform the four analyses summarized in
Figure 2. As we explain below, this analysis amounts to
queries resolved by the underlying SMT solver, Z3.

Gesture safety: The first analysis is for gesture safety.
Just because it’s possible to ask someone to make a gesture
does not mean it is a good idea. A gesture may ask people
to overextend their limbs, make an obscene motion, or
otherwise potentially harm the user. To prevent an unsafe
gesture from being present in the store, we first define
safety restrictions. Safety restrictions are sets of body
positions that are not acceptable. Safety restrictions are
encoded as SMT formulas that specify disallowed positions
for Kinect skeleton joints.

Internal validity: It is possibly in PREPOSE to write a
gestures that can never be matched. For example, a gesture
that requires the user to keep their arms both up and down
contains an internal contradiction. We analyze PREPOSE
gestures to ensure they lack internal contradictions.

Reserved gestures: A special case of conflict detection
is detecting overlap with reserved gestures. For example,
the Xbox Kinect has a particular attention gesture that
opens the Xbox OS menu even if another game or program
is running. Checking conflicts with reserved gestures is
important because applications should not be able to
“shadow” the system’s attention gesture with its own
gestures.

Conflict detection: We say that a pair of gestures
conflicts if the user’s movements match both gestures
simultaneously. Gesture conflicts can happen accidentally,
because gestures are written independently by different
application developers. Alternatively, a malicious applica-
tion can intentionally register a gesture that conflicts with
another application. In PREPOSE, because all gestures
have semantics in terms of SMT formulas, we can ask a
solver if there exists a sequence of body positions that
matches both gestures. If the solver completes, then either
it certifies that there is no such sequence or gives an
example.

Declarations
app APP : (gesture .) + EOF
gesture GESTURE : pose + execution
pose = POSE :
statement (, statement) *
statement = transform | restriction
execution EXECUTION :
(repeat the following steps
executionStep(, executionStep) *
| executionStep(, executionStep) *)
executionStep = motionConstraint ?
(‘and holdConstraint) ?
Transforms
transform = pointTo
| rotatePlane
| rotateDirection
pointTo = point your 7
bodyPart((, your ? bodyPart) *
and your ? bodyPart) ?
(to | to your) ? direction
rotatePlane n= rotate your
bodyPart((, your ? bodyPart) *
and your ? bodyPart) ?
degrees
angularDirection on the 7
referencePlane
rotateDirection n= rotate your bodyPart
((, your ? bodyPart) *
and your ? bodyPart) ?
degrees
(to | to your)?
direction
Restrictions
restriction = dont ? touchRestriction

| dont ? putRestriction

| dont 7 alignRestriction
touch your ?

bodyPart with your ?

touchRestriction n=

side hand
putRestriction = put your ?
bodyPart((, your ? bodyPart) *
and your ? bodyPart) ?
relativeDirection bodyPart
align Restriction = align your ?
bodyPart((, your ? bodyPart) *
and your ? bodyPart) ?
Skeleton
bodyPart = joint | side arm | side leg | spine
| back | arms | legs | shoulders
| wrists | elbows | hands
| hands tips | thumbs | hips
| knees | ankles | feet | you
joint n= centerJoint | side sidedJoint
centerJoint neck | head | spine m |
spine base | spine shoulder
side left | right
sidedJoint shoulder | elbow | wrist | hand |
hand tip | thumb | hip | knee |
ankle | foot
direction = up | down | front | back | side
angularDirection = clockwise | counter clockwise
referencePlane = frontal plane | sagittal plane |
horizontal plane
relativeDirection = in front of your | behind your |
((on top of) |
above) your | below your |
to the side of your
motionConstraint 1= slowly | rapidly
holdConstraint hold for seconds
repeat repeat times

Fig. 10: BNF for PREPOSE. The start symbol is app.

4 Techniques

Figure 10 shows a BNF for PREPOSE which we currently
support. This captures how PREPOSE applications can be
composed out of gestures, gestures composed out of poses
and execution blocks, execution blocks can be composed

Rotate-Frontal(j, a, Clockwise)
j.Y = cos(a) - j.Y + sin(a) - j.Z
j.Z = —sin(a) - .Y + cos(a) - j.Z

ROTATE-FRONTAL+

Rotate-Frontal(j, a, CounterClockwise)
3.Y = cos(a) - 3.Y — sin(a) - j.Z
j.Z = sin(a) - j.Y + cos(a) - j.Z

ROTATE-FRONTAL-

Rotate-Sagittal(yj, a, Clockwise)
7.X = cos(a) - 5. X + sin(a) - j.Y
j.Y = —sin(a) - j. X + cos(a) - j.Y

ROTATE-SAGITTAL+

Rotate-Sagittal(yj, a, CounterClockwise)
j.X = cos(a) - 7. X — sin(a) - j.Y
j.Y = sin(a) - 3. X + cos(a) - .Y

ROTATE-SAGITTAL-

Rotate-Horizontal(j, a, Clockwise)
j.X = cos(a) - j.X + sin(a) - j.Z
j.Z = —sin(a) - 5. X + cos(a) - j.Z

ROTATE-HORIZONTAL+

Rotate-Horizontal(j, a, CounterClockwise)
j.X = cos(a) - j.X — sin(a) - j.Z
j.Z = sin(a) - j. X + cos(a) - j.Z

ROTATE-HORIZONTAL-

Fig. 11: Transformations translated into Z3 terms. j is the joint
position (with X, Y, and Z components); a is the rotational angle.

out of execution steps, etc?.

The grammar is fairly extensible: if one wishes to sup-
port other kinds of transforms or restrictions, one needs
to extend the PREPOSE grammar, regenerate the parser,
and provide runtime support for the added transform or
restriction. Note also that the PREPOSE grammar lends
itself naturally to the creation of developer tools such as
context-sensitive auto-complete in an IDE or text editor.

4.1 Prepose to SMT Formulas

PREPOSE compiles programs written in the PREPOSE
language to formulae in Z3, a state-of-the-art SMT solver.

Translating basic transforms: Figure 11 captures the
principles of translating PREPOSE transforms into Z3
terms; the figure shows the different variants of how
rotatePlane from Figure 10 is translated by way of illus-
tration. These are update rules that define the (X,Y, Z)
coordinates of the joint 7 to which the transformation is
applied. Note that rotatePlane transformations take the
plane p and direction d as parameters. Depending on the
type of rotation, namely, the rotation plane, one of these
rules is picked. These coordinate updates generally require
a trigonometric computation?.

Translating basic restrictions: Figure 12 shows how
PREPOSE restrictions are translated to Z3 constraints.
Auxiliary functions Angle and Distance that are further
compiled down into Z3 terms are used as part of com-
pilation. Additionally, thresholds thengie and thaistance

2For researchers who wish to extend PREPOSE, we have up-
loaded an a ANTLR version of the PREPOSE grammar to http:
//binpaste.com/fdsdf

3Because of the lack of support for these functions in Z3, we
have implemented sin and cos applied to a using lookup tables for
commonly used values.

10

Allgn(jl s]2)

ALIGN —
'+ Angle(j1,j2) < thatign
LowerThan(y)
LOWERTHAN - -
T'FjY < sin(thangie)
Put-Front(j1, j2, InFront0fYour
Pur-FrRONT (1, 72)

I'Fj1.Z > j2.Z + thaistance

Put-Behind(ji, j2, BehindYour)
'k jl-Z < ijZ — thdistance

PuT-BEHIND

Put-Right(ji, j2, ToTheRight0fYour)

Pur-RIGHT . .
T'Fj1.X > j2.X + thaistance
Put-Left(j1, j2, ToTheLeft0fYour)
Putr-LEFT - .
'+]1.X < JZ»X - thdistance
PUr-Top Put_,TOP(jl,’ Jj2,0nTopOfYour)
I'Ej1.Y > j2.Y + thdistance
PuT-BELOW PUt_,BeloW(,jl 32, BelowYour)
I'Fj1.Y < j2.Y — thaistance
Touch(ji,j
ToucH - - (]1,732)
T + Distance(j1 < j2) < thdistance
KeepAngle(ji,j
KEEPANGLE pAngle(ii. jz)

'+ Angle(j1 < j2) < thangie

Fig. 12: Restrictions translated into Z3 terms. Note that thy;stance
and thgngie are static thresholds: they define what it means to
perform a specific pose. For instance, touching a surface does not
mean literally touching it; being very close to it is sufficient. As in
Figure 11, j is the joint position (with X, Y, and Z components).

APP simple:
GESTURE generic-left-punch
POSE prepare-punch
put your left elbow behind your neck.

POSE execute-left-punch
put your left elbow in front of your neck.

EXECUTION
prepare-punch,
rapidly execute-left-punch.

Fig. 13: Left punch gesture used in our example.

are static thresholds that are part of pose definition, as
opposed to runtime thresholds used for matching.

Interacting with the solver: In order to illustrate
interaction with the Z3 solver we use the concrete sample
gesture shown in Figure 13 consisting of two poses as a
running example. The sample illustrates the execution of
a left punch. The analysis we focus on here is that of
checking that executing the gesture does not violate the
default safety restrictions.

The default safety restrictions are stated in terms
of arithmetic constraints on joint coordinates of
the body that is represented by a dictionary from
joints to real-numbered (3D) coordinates (x,y,z),
as well as a dictionary from joints to norms (or
reference coordinates). There are a total of 25 joints,
such as ElbowLeft, KneeRight, etc., corresponding

(>= (- |Head X| 0.0)

(- |Head X| 0.0)

(- 0.0 (- |Head X| 0.

(>= (- |Head Y| 1.0)

(- |Head Y| 1.0)

(- 0.0 (- |Head Y| 1.

(>= (- |Head Z| 0.0)

(- |Head z| 0.0)

(- 0.0 (- |Head z| O.

(>= (- |Neck X| 0.0)

(- INeck X| 0.0)

(- 0.0 (- INeck X| 0.

(>= (- |Neck Y| 1.0)

(- INeck Y| 1.0)

(- 0.0 (- |Neck Y| 1.

(>= (- INeck z| 0.0)

(- INeck zl| 0.0)

(- 0.0 (- INeck Z| 0.0))))

(>= (- | pineMid X| 0.0) 0.0)

(- | pineMid X| 0.0)

(- 0.0 (- | pineMid X| 0.0))))

(>= (- | pineMid Y| 1.0) 0.0

(- | pineMid Y| 1.0)

(- 0.0 (- | pineMid Y| 1.

(>= (- | pineMid Z| 0.0)

(- | pineMid Z| 0.0)

(- 0.0 (- | pineMid Z| 0.

(>= (- | pine houlder X|

(- | pine houlder X| 0.0)

(- 0.0 (- | pine houlder X| 0.0))))

(>= (- | pine houlder Y| 1.0) 0.0

(- | pine houlder Y| 1.0)

(- 0.0 (- | pine houlder Y| 1.0))))

(>= (- | pine houlder Z| 0.0) 0.0

(- | pine houlder Z| 0.0)

(- 0.0 (- | pine houlder Z| 0.0))))

(>= (- | pineMid X| | pine houlder X|) 0.0

(- | pineMid X| | pine houlder XI)

(- 0.0 (- | pineMid X| | pine houlder X[))))

(>= (- | pineMid Y| | pine houlder Y|) 0.0

(- | pineMid Y| | pine houlder YI|)

(- 0.0 (- | pineMid Y| | pine houlder Y[))))

(>= (- | pineMid Z| | pine houlder Z|) 0.0

(- | pineMid Z| | pine houlder Z|)

(- 0.0 (- | pineMid Z| | pine houlder ZI))))
(- | houlderLeft X|) | houlderRight XI|)
- |HipLeft X|) IHipRight X1)))

- | houlderLeft YI|) | houlderRight YI)
(- |HipLeft Y|) |HipRight Y[)))

- | houlderLeft Z|) | houlderRight Z|)
- |HipLeft Z|) |HipRight Z[)))

0.0
(*
(*
(*
(*
(*
(+

(let ((a!l (ite 0.0)
0))))

(al2 (ite 0.0)
0))))

(a!3 (ite 0.0)
0))))

(a!5 C(ite 0.0)
0))))

(al'6 (ite 0.0)
0))))

(a!7 (ite 0.0)

(a'9 (ite

(al10 (ite

0))))

(a!11 (ite 0.0)

0))))

(a!13 (ite 0.0) 0.0)

(al14 (ite
(a!15 (ite
(al17 (ite
(al18 (ite

(al19

(alt21

(al22

(al!24

cooooo

[
[
.0
0
[
0

(al27
|ElbowLeft Z| |ElbowLeft Norm|)
| houlderLeft Z| | houlderLeft Norm|)
| pine houlder Z| | pine houlder Norml)
| pineMid Z| | pineMid Norm|)
|ElbowLeft Z| |ElbowLeft Norml))
0.0
(* |Neck Z| |Neck Norml)
(x | pine houlder Z| | pine houlder Norml)
(x | pineMid Z| | pineMid Norm|)
(* INeck Z| |Neck Norml|))
(/ 1.0 10.0)))))
(let ((a'4 (ite (>= (ite (>= a!l a!2)
(ite (>= a'l al!2) a!'1
a!3))
(>= (ite
(ite (>=
al7))
(a!12 (ite (>= (ite
(ite (>=
all1))
(>= (ite
(ite (>=
alls))
(>= (ite
(ite (>=
al19))
(>= (ite
(ite
(ite (>=
(ite (>=
(>= a'23
al23
(ite (>=
true
al4 (/ 153.0 200.0))
a!8 (/ 153.0 200.0))
al12 (/ 153.0 200.0))
al16 (/ 153.0 200.0))
a!20 (/ 153.0 200.0))
(not (< a!20 (/ 433.0 250.0)))
(not (and (< |ElbowLeft Z| 0.0) (> |ElbowLeft X| 0.0)))
(not (and (< |ElbowLeft Z| 0.0) (> |ElbowLeft Y| 0.0)))
(not (and (< |ElbowRight Z| 0.0) (< |ElbowRight X| 0.0))
(not (and (< |ElbowRight Z| 0.0) (> |ElbowRight Y| 0.0))
(< a!25 (/ 153.0 200.0))
(< |KneeLeft Y| 0.0)
(< |KneeRight Y| 0.0))))
(and a!26 true a!27 a!26)))))

all a!2) al!3)
al2)

als al6) al7)
al6)

(>= a!5 al!6)
al!5 a!6) al!s

(a!'8 (ite

(>= a!9 al!l10) a!9 a!10) a!ll)
al9 a!10) a!9 a'!10)
(all6 (>= a!13 a!14) a!'13 a!14) al!15)
al13 a'14) a'13 a'i14)

(ite

(>= al!l7 a!18) a!17 a!18) a!19)
all7 a!18) a!l7 a!18)

(a!20 (ite

(>= al21 0.0) a!21 (- 0.0 a!21))

(>= a!22 0.0) a!22 (- 0.0 a!22)))

al21 0.0) a!21 (- 0.0 a!21))

al22 0.0) a'22 (- 0.0 a!22)))))

(ite (>= al24 0.0) a!24 (- 0.0 a!24)))

(a!23 (ite

(let ((a!'25 (ite

al24 0.0) a'24 (- 0.0 a!24)))))

(let ((a!'26 (and

Fig. 14: Z3 terms for the internal validity constraints for prepare-
punch.

to the different joint types in the Kinect API in
Microsoft.Kinect.d1ll. The interested reader is referred
to https://github.com/Microsoft/prepose/Z3Experiments/

11

Z3Experiments/Gestures/Analysis/Safety.cs, method
DefaultSafetyRestriction, for full details. Real
numbers are modeled by rational numbers in this setting.
The clear benefit of this is that satisfiability checking of
the linear arithmetic constraints that arise as a result of
the analysis is decidable.

First, each pose is checked for internal validity. This
means that the current body constraint (that is a
quantifier-free predicate over the joint constraints) is
transformed according to the pose and the resulting body
predicate (that is also a quantifier-free constraint over
the joint constraints since the transformation does not
introduce quantifiers) is evaluated for satisfiability in con-
junction with a default safety condition. The default safety
condition includes checks such as: neck and hips are not
inclinated beyond a given threshold, hips are aligned with
the shoulders or at lest within a safe range, elbows are
not behind the back and not on the top/back sub-space,
the inclination of wrists towards the back is not higher
than the inclination of the elbows unless elbows are up or
wrists are directed to torso, etc. If the transformed body
constraint is unsatisfiable, this means that there exists no
instance of the coordinates that would correspond to a
concrete safe body position, and so the pose is deemed
internally invalid.

In this gesture the first pose is in fact internally invalid,
as the analysis correctly discovers that putting your left
elbow behind your neck is not feasible for a typical hu-
man being. The Z3 terms for this gesture are shown in
Figure 14; as the reader can see, there is a great deal
of expansion that happens when translating PREPOSE
gestures to Z3 terms.

If each pose is internally valid the poses are composed
sequentially. Such sequential composition corresponds to
constructing a predicate that describes all the possible
body positions from the given initial predicate. Again,
the resulting predicate has only positive occurrences of
existential quantifiers, i.e., it is essentially quantifier-free,
because a positive occurrence of an existential quantifier
corresponds to an uninterpreted constant. Note however,
that negating such a constraint would, in general, no longer
be quantifier-free, if the quantifiers are treated as exis-
tential. The current analysis does not require operations
that would introduce satisfiability checking of formulas
involving universal quantifiers.

Runtime Execution: After a PREPOSE script is trans-
lated to Z3 constraints, we use the Z3 solver to match
a user’s movements to the gesture. The trusted core of
PREPOSE registers with the Kinect skeleton tracker to
receive updated skeleton positions of the user.

For each new position, the runtime uses the Z3 term
evaluation mechanism to automatically apply gestures
to the previous user’s position to obtain the target (in
a sense, ideal) position for each potential gesture. This
target position is in turn compared to the current user’s
joints’ position to see if there is a match and to notify the
application.

Note that this is an approximate comparison where the

level of precision can be specified by the application (see,
for instance, Figure 15 with a slider for specifying the
accuracy of the match). Note that this is a very lightweight
use of the theorem prover, as we only evaluate terms
without doing satisfiability checking. One could also have
a custom runtime matching mechanism instead. Upon
receiving a notification, the application may then give
feedback to the user, such as encouragement, badges for
completing a gesture, or movement to a more difficult
gesture.

4.2 Security and Reliability

By design, PREPOSE is amenable to sound static reasoning
by translating queries into Z3 formulae. Below we show
how to convert key security and reliability properties into
73 queries. The underlying theory we use is that of reals.
We also use non-recursive data types (tuples) within Z3.

Please remember that these are static analyses that
typically take place before gestures are deployed to the
end-user — there is no runtime checking overhead. The
properties below are also briefly summarized in Figure 2.

Unlike approximate runtime matching described above,
static analysis is about precise, ideal matching. We do not
have a theory of approximate equality that is supported by
the theorem prover. We treat gestures such as G : B — B,
in other words, as functions that transform bodies in set
B to new bodies.

Basic gesture safety: The goal of these restrictions is
to make sure we “don’t break any bones” by allowing
the user to follow this gesture. We define a collection of
safety restrictions pertaining to the head, spine, shoulders,
elbows, hips, and legs. We denote by Rg the compiled
restriction, the set of all states that are allowed under our
safety restrictions. The compiled restriction Rg is used to
test whether for a given gesture G

3b € B : ~Rs(G(b))

in other words, does there exist a body which fails to
satisfy the conditions of Rg after applying G. Rg restricts
the relative positions of the head, spine, shoulders, elbows,
hips, and legs. The restriction for the head is shown below
to give the reader a sense of what is involved:

var head new SimpleBodyRestriction(body => {

Z3Point3D up = new Z3Point3D(0, 1, 0);
return Z3.Context.MkAnd (
body.Joints [JointType.Head]
.IsAngleBetweenLessThan (up, 45),
body.Joints [JointType.Neck]
.IsAngleBetweenLessThan (up, 45));

DM

Inner validity: We also want to ensure that our gesture
are not inherently contradictory, in other words, is it the
case that all sequences of body positions will fail to match
the gesture. An example of a gesture that has an inner
contradiction, consider

put your arms up;
put your arms down;

12

Obviously both of these requirements cannot be sat-
isfied at once. In the Z3 translation, this will give
rise to a contradiction: joint[’rightelbow”].Y=1 A
joint[’rightelbow”].Y = —1. To find possible contradic-
tions in gesture definitions, we use the following query:

~3b € B : G(b).

Protected gestures: Several immersive sensor-based sys-
tems include so-called “system attention positions” that
users invoke to get privileged access to the system. These
are the AR equivalent of Ctrl-Alt-Delete on a Windows
system. For example, the Kinect on Xbox has a Kinect
Guide gesture that brings up the home screen no matter
which game is currently being played. The Kinect “Return
to Home” gesture is easily encoded in PREPOSE and the
reader can see this gesture here: http://bit.1ly/1J1Xk79.
For Google Glass, a similar utterance is “Okay Glass.”
On Google Now on a Motorola X phone, the utterance
is “Okay Google.”

We want to make sure that PREPOSE gesture do not
attempt to redefine system attention positions.

dbeB,seS:GD) =s.

where S C B is the set of pre-defined system attention
positions.

Conflict detection: Conflict detection, in contrast, in-
volves two possibly interacting gestures G; and Gs.

dbeB: Gl(b) = Gg(b)

Optionally, one could also attempt to test whether com-
positions of gestures can yield the same outcome. For
example, is it possible that G1 o Go = G3 o G4. This can
also be operated as a query on sequences of bodies in B.

5 Experimental Evaluation

We built a visual gesture development and debugging
environment, which we call PREPOSE Explorer. Figure 15
shows a screen shot of our tool. On the left, a text entry
box allows a developer to write PREPOSE code with proper
syntax highlighting. On the right, the tool shows the user’s
current position in green and the target position in white.
On the bottom, the tool gives feedback about the current
pose being matched and how close the user’s position is to
the target.

5.1 Dimensions of Evaluation

Given that PREPOSE provides guarantees about security
and privacy by construction, we focused on making sure
that we are able to program a wide range of applications
that involve gestures, as summarized in Figure 16 and also
partially shown in the Appendix. Beyond that we want to
ensure that the PREPOSE-based gesture matching scales
well to support interactive games, etc. To summarize
o We used this tool to measure the expressiveness of
PREPOSE by creating 28 gestures in three different
domains.

e We then ran some benchmarks to measure runtime
performance and static analysis performance of PRE-
POSE. First, we report runtime performance, including
the amount of time required to match a pose and the
time to synthesize a new target position. Then, we
discuss the results of benchmarks for static analysis.

Prior work has used surveys to evaluate whether the
information revealed by various abstractions is acceptable
to a sample population of users in terms of its privacy.
Here, we are giving the application the least amount of
information required to do its jobs, so these surveys are
not necessary.

5.2 Expressiveness

Because the PREPOSE language is not Turing-complete, it
has limitations on the gestures it can express. To determine
if our choices in building the language are sufficient to han-
dle useful gestures, we built gestures using the PREPOSE
Explorer. We picked three distinct areas: therapy, tai-chi,
and ballet, which together cover a wide range of gestures.
Figure 16 shows the breakdown of how many gestures we
created in each area, for 28 in total. These are complex
gestures: the reviewers are encouraged to examine the code
linked to from Figure 16.

For example, Figure 17 shows some of the poses from tai-
chi captured by PREPOSE code. We chose tai-chi because
it is already present in Kinect for Xbox games such as
Your Shape: Fitness Evolved. In addition, tai-chi poses
require complicated alignment and non-alignment between
different body parts.

5.3 Pose Matching Performance

We used the Kinect Studio tool that ships with the Kinect
for Windows SDK to record depth and video traces of
one of the authors. We recorded a trace of performing
two representative gestures. Each trace was about 20
seconds in length and consisted of about 20,000 frames,
occupying about 750 MB on disk. We picked these to be
two representative tai-chi gestures.

Our measurements were performed on an HP Z820 Pen-
tium Xion E52640 Sandy bridge with 6 cores and 32 GB
of memory running Windows 8.1.

For each trace, we measured the matching time: the
time required to evaluate whether the current user posi-
tion matches the current target position. When a match
occurred, we also measured the pose transition time: the
time required to synthesize a new target pose, if applicable.

Our results are encouraging. On the first frame, we
observed matching times between 78 ms and 155 ms,
but for all subsequent frames matching time dropped
substantially. For these frames, the median matching time
was 4 ms. with a standard deviation of 1.08 ms. This is
fast enough for real time tracking at 60 FPS (frames per
second).

For pose transition time, we observed a median time
of 89 ms, with a standard deviation of 36.5 ms. While this
leads to a “skipped” frame each time we needed to create

13

a new pose, this is still fast enough to avoid interrupting
the user’s movements.

While we have made a design decision to use a theorem
prover for runtime matching, one can replace that machin-
ery with a custom runtime matcher that is likely to run
even faster. When deploying PREPOSE-based applications
on a less powerful platform such as the Xbox, this design
change may be justified.

5.4 Static Analysis Performance

Safety checking: Figure 18 shows a near-
linear dependency between the number of
steps in a gesture and time to check against
safety restrictions. Exploring the results further,
we performed a linear re-
gression to see the in- Tntercept Y
fluence of other param- NumTransforms 0.73
NumRestrictions -2.42
eters such aS. the nurp— NumNegatedRestrictions -6.23
ber of negative restric- NumSteps 29.48

tions. The R? value of the
fit is about 0.9550, and the coefficients are shown in the
table to the right. The median checking time is only 2 ms.
We see that safety checking is practical and, given how
fast it is, could easily be integrated into an IDE to give
developers quick feedback about invalid gestures.

Validity checking: Figure 19 shows another near-linear
dependency between the number of steps in a gesture and
the time to check if the gesture is internally valid. The
average checking time is 188.63 ms. We see that checking
for internal validity of gestures is practical and, given how
fast it is, could easily be integrated into an IDE to give
developers quick feedback about invalid gestures.

Conflict checking: We performed pairwise conflict check-
ing between 111 pairs of gestures from our domains.
Figure 20 shows the CDF of conflict checking times, with
the x axis in log scale. For 90% of the cases, the checking
time is below 0.170 seconds, while 97% of the cases took
less than 5 seconds and 99% less than 15 seconds. Only
one query out of the 111 took longer than 15 seconds. As a
result, with a timeout of 15 seconds, only one query would
need attention from a human auditor.

6 Limitations

This work is the first step in defining a programmable way
to limit the potential for privacy leaks in gesture-based
programming. We are not claiming that we have solved all
the potential privacy issues. In fact, we believe strongly
that the attack model will evolve as this space rapidly
changes.

A major challenge is to define a precise and easy to
reason about attack model in this space. Our key contribu-
tion lies in going beyond the model that gives application
direct access to hardware and providing an abstraction
layer above that. It is exceedingly difficult to argue that
that abstraction layer cannot be abused by a clever at-
tacker. By way of analogy, consider an operating system

App
GESTURE

PoiE
point o
point .y
point [
POSE
point digein
rotats 28 degrees to youwr right
rotate I8 degrees to your Left
point e your Tromt
POSE
point dn
POLE
point te your froat
PosE
point wp
Fotate I8 degrees To your fraest
rotate 20 dagrese to your right
rotats 28 degrees to youwr left
POSE

don't align
don't align

“m o

starting
stand_straight inhale_arms

transition_arms

[

exhale_arms bend_your_knees_slightly

Fig. 15: Screenshot of PREPOSE Explorer in action.

o
2

e} n

@ Q

3 o

& 8 2 5

< O A& A URL

Therapy 12 28 225 http://pastebin.com/ARndNHdu
Ballet 11 16 156 http://pastebin.com/c9nz6NP8
Tai-chi 5 32 314 http://pastebin.com/VwTcTYrW

Fig. 16: We have encoded 28 gestures in PREPOSE, across three
different applications. The table shows the number of total poses and
lines of PREPOSE code for each application. Each pose may be used
in more than one gesture. The Appendix has one of the PREPOSE
applications, Ballet, listed as well.

mechanism that allows applications to register keystrokes
(or key chords) such as Ctrl 4 Alt + P. While this makes
it considerably more difficult to develop a keylogger, it is
difficult to claim that one cannot determine whether the
user is left-handed or possibly to fingerprint different users
based on the frequency of their shortcut use. Similarly, in
the context of PREPOSE, a clever attacker may define a
“network” of really fine-grained gestures to collect statistics
about the user.

A key advantage of PREPOSE is that when new at-
tacks are discovered, they can be encoded as satisfiability
queries, which gives one way to tackle these attacks as well.
We see the following areas as extensions of our current
work:

o We do not explicitly reason about the notion of time;
there could be a pose that is safe for brief periods of

14

Fig. 17: The tai-chi gestures we have encoded using PREPOSE
(http : //pastebin.com/VuTcTYrW) all come from this illustration.

time but is less safe when held for, say, a minute.

Our current approach reasons about conflicts at the
level of entire gestures. This does not preclude con-
flicts at the intermediate, sub-gesture level. A possible
way to alleviate this situation is to automatically
compile the current set of gesture into intermediate,
atomic gestures, which could be validated for lack of

500

450

400

350

300

250

200

150

100
50

0

0 2 4 6 8 10 12 14 16

Fig. 18: Time to check for safety, in ms, as a function of the number
of steps in the underlying gesture.

600

500

400

@

300

@

o9

100

@

o @» o

@

0

0 2 4 6 8 10 12 14 16

Fig. 19: Time to check internal validity, in ms, as a function on the
number of steps in the underlying gesture.

conflicts.

o PREPOSE requires the developer to manually write
gestures. A natural next step is to automatically
synthesize gestures by demonstration.

7 Related Work

Below we first describe some gesture-building approaches,
mostly from the HCI community, and then we talk about
privacy in sensing-based applications.

7.1 Gesture Building Tools

Below, we list some of the key projects that focus on
gesture creation. PREPOSE’s approach is unique in that

15

100%

o il

97% of checks
are faster than 5
seconds

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

1 10 100 1,000 10,000 100,000

Fig. 20: Time to check for conflicts for a pair of gestures presented
as a CDF. The z axis is seconds plotted on a log scale.

it focuses on capturing gestures using English-like com-
mands. This allows gesture definitions to be modified more
easily. PREPOSE differs from the tools below in that it
focuses on security and privacy at the level of system
design.

CrowdLearner [1] provides a crowd-sourcing way to
collect data from mobile devices usage in order to create
recognizers for tasks specified by the developers. This way
the sampling time during the application development is
shorter and the collected data should represent a better
coverage of real use scenarios in relation to the usual in-lab
sampling procedures. Moreover, it abstracts for developers
the classifier construction and population, requiring no
specific recognition expertise.

Gesture Script [23] provides a unistroke touch gesture
recognizer which combines training from samples with
explicit description of the gesture structure. By using the
tool, the developer is enabled to divide the input gestures
in core parts, being able to train them separately and
specify by a script language how the core parts are per-
formed by the user. This way, it requires less samples for
compound gestures because the combinations of the core
parts are performed by the classifier. The division in core
parts also eases the recovery of attributes (e.g. number of
repetitions, line length, etc.) which can be specified by the
developer during the creation of the gestures.

Proton [19] and Proton++ [18] present a tool directed
to multitouch gestures description and recognition. The
gestures are modeled as regular expressions and their
alphabet consists of the main actions (Down, Move and
Up), and related attributes e.g.: direction of the move
action; place or object in which the action was taken;
counter which represents a relative ID; among others. It is
shown that by describing gestures with regular expressions
and a concise alphabet it is possible to easily identify

ambiguity between two gestures previously to the test
phase.

CoGesT [10] presents a scheme to represent hand and
arms gestures. It uses a grammar which generates the pos-
sible descriptions, the descriptions are based on common
textual descriptions and related to the coordinate system
generated by the body aligned planes (sagittal, frontal
and horizontal). The transcription is mainly related to
relative positions and trajectories between them, relying
on the form and not on functional classification of the
gesture. Moreover it does not specify the detailed position
but more broad relations between body parts. This way
the specified gestures are not strongly precise. On the
other hand, it enables users to produce equivalent gestures
by interpreting the description and using their knowledge
about gesture production.

BAP [7] approaches the task of coding body movements
with focus on the study of emotion expression. Actors
trained the system by performing specific emotion rep-
resentations and these recorded frames were coded into
pose descriptions. The coding was divided into anatomic
(explicating which part of the body was relevant in the
gesture) and form (describing how the body parts were
moving). The movement direction was described adopting
the orthogonal body axis (sagittal, vertical and trans-
verse). Examples of coding: Left arm action to the right;
Up-down head shake; Right hand at waist; etc.

Annotation of Human Gesture [28] proposes an ap-
proach for transcribing gestural movements by overlaying
a 3D body skeleton on the recorded actors’ gestures. This
way, once the skeleton data is aligned with the recorded
data, the annotation can be created automatically.

RATA [29] presents a tool to create recognizers for touch
and stylus gestures. The focus is on the ease and rapidity of
the gesture recognition developing task. The authors claim
that within 20 minutes (and by adding only two lines of
code) developers and interaction designers can add new
gestures to their application.

EventHurdle [17] presents a tool for explorative proto-
typing of gesture use on the application. The tool is pro-
posed as an abstraction of the gathered sensor data, which
can be visualized as a 2D graphic input. The designer also
can specify the gesture in a provided graphical interface.
The main concept is that unistroke touch gestures can be
described as a sequence of trespassed hurdles.

GestureCoder [24] presents a tool for multi-touch ges-
ture creation from performed examples. The recognition is
performed by creating a state machine for the performed
gestures with different names. The change of states is
activated by some pre-coded actions: finger landing; lifting;
moving; and timeout. The ambiguity of recorded gestures
is solved by analyzing the motion between the gestures
using a decision tree.

GestureLab [5] presents a tool for building domain-
specific gesture recognizers. It focuses on pen unistroke
gestures by considering trajectory but also additional at-
tributes such as timing and pressure.

MAGIC [2] and MAGIC 2.0 [21] are tools to help

16

developers, which are not experts in pattern recognition,
to create gesture interfaces. Focuses on motion gesture
(using data gathered from motion sensors, targeted to
mobile scenario). MAGIC 2.0 focuses on false-positive pre-
diction for these types of gestures. MAGIC comes with an
“Everyday Gesture Library” (EGL), which contains videos
of people performing gestures. MAGIC uses the EGL to
perform dynamic testing for gesture conflicts, which is
complementary to our language-based static approach.

Zhao et al. [35] proposes a rule-based gesture recognizer
for the physiotherapy domain. It exposes rules as an XML
considering joints positions and the corresponding bones
orientations. The ‘hip abduction’ gesture is demonstrated
in 48 lines of XML code, which allows later edition and
refinement of the gesture.

GDL [11] presents a DSL for gesture description. Rules
are written using the language, and are defined by cause
(specific body conditions) and effect (resulting Boolean
value). The rules can be either logical or numerical, allow-
ing the developer to set thresholds for specific conditions.
Rules can be connected by using the effect of previous
rules as input. It is also allowed to use rules that relate
between previous and current poses, and in addition to
specify a required waiting time for poses transition in order
to consider the rule as valid.

Leech and Kostek [22] present a rule-based recognizer
and a corresponding DSL for dynamic hand gestures recog-
nition. Once dynamic gestures require motion, the used
inputs are the direction and velocity of the performed hand
movements. Rules are composed of boolean expressions
using operators like “AND” and “NOT”, while dealing with
dynamic gestures, in order to specify that some constraints
should be considered on the following moment the “THEN”
command is applied.

Bedregal et al. [3] also propose a rule-based recognizer
and DSL for hand gestures, using as input joints and
separations between fingers tracked by a data glove. The
DSL describes each pose of the hand on time. Terms for
finger joints are STRAIGHT, CURVED or BENT referring
to the angles for each joint, and the terms for finger
separations are CROSSED, CLOSED, SEMI-OPEN and
OPEN also referring to lateral angles. Despite these angle
descriptions being represented at a high level discrete class,
by using Fuzzy logic each joint or separation can partially
belong to more than one class.

Hoste and Signer [13] analyze several gesture program-
ming languages including Proton and GDL and propose
30 criteria to classify these solutions as well as enhance
the discussion about their limitations and future possibili-
ties. The criteria include topics like readability, reliability,
customization and scalability in terms of performance.

7.2 Sensing and Privacy

The majority of work below focuses on privacy concerns
in sensing applications. In PREPOSE, we add some security
concerns into the mix, as well.

SURROUNDWEB [34] presents an immersive browser
which tackles privacy issues by reducing the required

privileges. The concept is based on a context sensing tech-
nology which can render different web contents on different
parts of the room. In order to prevent the web pages to
access the raw video stream of the room, SURROUNDWEB
is proposed as a rendering platform through the Room
Skeleton abstraction (which consists on a list of possible
room “screens”). Moreover the SURROUNDWEB introduces
a Detection Sandbox as a mediator between web pages
and object detection code (never telling the web pages
if objects were detected or not) and natural user inputs
(mapping the inputs into mouse events to the web page).

Darkly [16] proposes a privacy protection system to
prevent access of raw video data from sensors to untrusted
applications. The protection is performed by controlling
mechanisms over the acquired data. In some cases the
privacy enforcement (transformations on the input frames)
may reduce application functionality.

OS Support for AR Apps [8] and AR Apps with Recog-
nizers [15] discusses the access the AR applications usually
have to raw sensors and proposes OS extension to control
the sent data by performing the recognizer tasks itself.
This way the recognizer module is responsible to gather
the sensed data and to process it locally, giving only the
least needed privileges to AR applications.

MockDroid [4] proposes an OS modification for smart
phones in which applications always ask the user to access
the needed resources. This way users are aware of which
information are being sent to the application whenever
they run it, and then can decide between the trade-off of
giving access or using the application functionality.

AppFence [12] proposes a tool for privacy control on
mobile devices, which can block or shadow sent data
to applications in order to keep the application up and
running, but prevent exfiltration of on-device data. What
You See is What You Get [14] proposes a widget which
alerts users of which sensor is being requested by which
application.

Recent work on world-driven access control restricts sen-
sor input to applications in response to the environment,
e.g. it can be used to disable access to the camera when
in a bathroom [30]. Mazurek et al. surveyed 33 users to
determine how they think about controlling access to data
provided by a variety of devices, and discovered that many
user’s mental models of access control are incorrect [25].
Vaniea et al. performed an experiment to determine how
users notice and fix access-control permission errors de-
pending on where the access-control policy is spatially
located on a web site [33].

8 Future Work

While this paper assumes that the developer will author
the gesture code, we envision numerous possibilities re-
lated to automatically inferring PREPOSE programs by
demonstration [6,24,27]. This approach has been used in
several other areas of programming, in interacting with
users who are not necessarily technologically sophisticated.
In our context, we can readily foresee useful training
scenarios such as the two below:

17

e a personal trainer at a gym demonstrating a per-
sonalized workout program, which gets notated as
PREPOSE gestures and given to the gym goes to use
at home for exercises during the week;

a doctor working with patients with limited mobility
who works on adaptation of user interfaces [31]. The
doctor can demonstrate a gesture that corresponds
to a mouse double-click and have that recorded by
PREPOSE, etc.

In both of these cases, a intermediary specialist is working
with a PREPOSE-equipped Kinect sensor, whose goal is to
learn PREPOSE gestures for later use by end-users.

9 Conclusions

This paper introduces the PREPOSE language and runtime.
PREPOSE allows developers to write high-level gesture
descriptions that have semantics in terms of SMT formu-
las. Our architecture protects the privacy of the user by
preventing untrusted applications from directly accessing
raw sensor data; instead, applications register PREPOSE
code with a trusted runtime. Sound static analysis helps
eliminate possible security and reliability issues.

To test the expressiveness of PREPOSE, we have cre-
ated 28 gestures in PREPOSE across three important and
representative immersive programming domains. We also
showed that PREPOSE programs can be statically analyzed
quickly to check for safety, pairwise conflicts, and conflicts
with system gestures.

Runtime matching in PREPOSE as well as static con-
flict checking, both of which reduce to Z3 queries, are
sufficiently fast (milliseconds to several seconds) to be
deployed. By writing gesture recognizers in a DSL delib-
erately designed from the ground up to support privacy,
security, and reliability, we obtain strong guarantees with-
out sacrificing either performance or expressiveness. Our
Z3-based approach has more than acceptable performance
in practice. Pose matching in PREPOSE averages 4 ms. Syn-
thesizing target pose time ranges between 78 and 108 ms.
Safety checking is under 0.5 seconds per gesture. The
average validity checking time is only 188.63 ms. Lastly,
for 97% of the cases, the conflict detection time is below 5
seconds, with only one query taking longer than 15 sec-
onds.

Acknowledgments

We would like to express our gratitude to our collaborators
working on the Kinect platform at Microsoft. We also
thank the anonymous reviewers, whose input has made
this paper a great deal stronger.

References
[1] S. Amini and Y. Li. Crowdlearner: rapidly creating mobile
recognizers using crowdsourcing. In Proceedings of the
Symposium on User Interface Software and Technology,
2013.

[2] D. Ashbrook and T. Starner. Magic: a motion gesture
design tool. In Proceedings of the Conference on Human
Factors in Computing Systems, pages 2159-2168. ACM,
2010.

[3] B.C.Bedregal, A. C. Costa, and G. P. Dimuro. Fuzzy rule-
based hand gesture recognition. In Artificial Intelligence
in Theory and Practice, pages 285-294. Springer, 2006.

[4] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan.
MockDroid: trading privacy for application functionality
on smartphones. In Proceedings of the Workshop on Mobile
Computing Systems and Applications, 2011.

[6] A. Bickerstaffe, A. Lane, B. Meyer, and K. Marriott.
Developing domain-specific gesture recognizers for smart
diagram environments. In Graphics Recognition. Recent
Advances and New Opportunities. Springer, 2008.

[6] A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Robot
programming by demonstration. In Springer handbook of
robotics, pages 1371-1394. Springer, 2008.

[7] N. Dael, M. Mortillaro, and K. R. Scherer. The body
action and posture coding system (bap): Development and
reliability. Journal of Nonverbal Behavior, 36(2), 2012.

[8] L. D’Antoni, A. Dunn, S. Jana, T. Kohno, B. Livshits,
D. Molnar, A. Moshchuk, E. Ofek, F. Roesner, S. Saponas,
et al. Operating system support for augmented reality
applications. Hot Topics in Operating Systems (HotOS),
2013.

[9] S. Fothergill, H. Mentis, P. Kohli, and S. Nowozin. In-
structing people for training gestural interactive systems.
In Proceedings of the Conference on Human Factors in
Computing Systems, 2012.

[10] D. Gibbon, R. Thies, and J.-T. Milde. CoGesT: a formal
transcription system for conversational gesture. In In
Proceedings of LREC 2004, 2004.

[11] T. Hachaj and M. R. Ogiela. Rule-based approach to
recognizing human body poses and gestures in real time.
Multimedia Systems, 20(1):81-99, 2014.

[12] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wether-
all. These aren’t the droids you’re looking for: retrofitting
android to protect data from imperious applications. In
Proceedings of the Conference on Computer and Commu-
nications Security, 2011.

[13] L. Hoste and B. Signer. Criteria, challenges and opportu-
nities for gesture programming languages. Proc. of EGMI,
pages 22-29, 2014.

[14] J. Howell and S. Schechter. What you see is what they
get: Protecting users from unwanted use of microphones,
camera, and other sensors. In In Proceedings of Web 2.0
Security and Privacy Workshop. Citeseer, 2010.

[15] S. Jana, D. Molnar, A. Moshchuk, A. Dunn, B. Livshits,
H. J. Wang, and E. Ofek. Enabling fine-grained permis-
sions for augmented reality applications with recognizers.
In Proceedings of the USENIX Security Symposium, 2013.

[16] S. Jana, A. Narayanan, and V. Shmatikov. A Scanner
Darkly: Protecting user privacy from perceptual applica-
tions. In IEEE Symposium on Security and Privacy, 2013.

[17] J.-W. Kim and T.-J. Nam. EventHurdle: supporting de-
signers’ exploratory interaction prototyping with gesture-
based sensors. In Proceedings of the Conference on Human
Factors in Computing Systems, 2013.

[18] K. Kin, B. Hartmann, T. DeRose, and M. Agrawala.
Proton++: A customizable declarative multitouch frame-
work. In Proceedings of the Symposium on User Interface
Software and Technology, 2012.

[19] K. Kin, B. Hartmann, T. DeRose, and M. Agrawala.
Proton: Multitouch gestures as regular expressions. In
Proceedings of the Conference on Human Factors in Com-
puting Systems, 2012.

[20] Kinect for Windows Team at Microsoft. Visual ges-
ture builder: A data-driven solution to gesture detection,

18

21]

22]

23]

24]

25]

[26]

27]
28]

29]

(30]

31]

32]

(33]

34]

35]

2014. https://onedrive.live.com/view.aspx?resid=
1A0C78068E0550B5 ! 77743&%app=WordPdf.

D. Kohlsdorf, T. Starner, and D. Ashbrook. MAGIC 2.0:
A web tool for false positive prediction and prevention for
gesture recognition systems. In Automatic Face & Gesture
Recognition and Workshops, 2011.

M. Lech and B. Kostek. Hand gesture recognition sup-
ported by fuzzy rules and kalman filters. International
Journal of Intelligent Information and Database Systems,
6(5):407-420, 2012.

H. Li, J. Fogarty, and Y. Li. Gesture script: Recognizing
gestures and their structure using rendering scripts and
interactively trained parts. 2014.

H. Li and Y. Li. Gesture coder: a tool for programming
multi-touch gestures by demonstration. In Proceedings
of the ACM Conference on Human Factors in Computing
Systems (CHI), 2012.

M. L. Mazurek, J. P. Arsenault, J. Bresee, N. Gupta,
I. Ion, C. Johns, D. Lee, Y. Liang, J. Olsen, B. Salmon,
R. Shay, K. Vaniea, L. Bauer, L. F. Cranor, G. R. Ganger,
and M. K. Reiter. Access control for home data shar-
ing: Attitudes, needs and practices. In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems, 2010.

L. D. Moura and N. Bjorner. Z3: An Efficient SMT Solver.
In Tools and Algorithms for Construction and Analysis of
Systems (TACAS), 2008.

C. G. Nevill-Manning. Programming by demonstration.
New Zealand Journal of Computing, 4(2):15-24, 1993.

Q. Nguyen and M. Kipp. Annotation of Human Gesture
using 3D Skeleton Controls. In LREC. Citeseer, 2010.

B. Plimmer, R. Blagojevic, S. H.-H. Chang, P. Schmieder,
and J. S. Zhen. Rata: codeless generation of gesture recog-
nizers. In Proceedings of the 26th Annual BCS Interaction
Specialist Group Conference on People and Computers.
British Computer Society, 2012.

F. Roesner, D. Molnar, A. Moshchuk, T. Kohno, and H. J.
Wang. World-driven access control. In ACM Conference
on Computer and Communications Security, 2014.

E. A. Suma, D. M. Krum, B. Lange, S. Koenig, A. Rizzo,
and M. Bolas. Adapting user interfaces for gestural in-
teraction with the flexible action and articulated skeleton
toolkit. Computers and Graphics, pages 193-201, 2012.
M. Tsikkos and J. Glading. Writing a gesture
service with the Kinect for Windows SDK, 2011.
http://blogs.msdn.com/b/mcsuksoldev/archive/
2011/08/08/ writing-a-gesture-service-with-the
kinect-for-windows-sdk.aspx.

K. Vaniea, L. Bauer, L. F. Cranor, and M. K. Reiter. Out
of sight, out of mind: Effects of displaying access-control
information near the item it controls. In IEEE Conference
on Privacy, Security and Trust (PST), 2012.

J. Vilk, D. Molnar, E. Ofek, C. Rossbach, B. Livshits,
A. Moshchuk, H. J. Wang, and R. Gal. SurroundWeb:
Mitigating Privacy Concerns in a 3D Web Browser . In
Proceedings of the Symposium on Security and Privacy,
2015.

W. Zhao, R. Lun, D. D. Espy, and M. Reinthal. Rule based
realtime motion assessment for rehabilitation exercises.
In Computational Intelligence in Healthcare and e-health
(CICARE), 2014 IEEE Symposium on, pages 133-140.
IEEE, 2014.

[1071771777777177777777777777777777717717771177177777777

// Gestures described based on conditioning programs

// providade by American Acadmey of Orthipaedic Surgeons

// http://orthoinfo.aaos.org/topic.cfm?topic=A00672
117117777177 777177777777777777777777777777777777717777

APP therapy:

// for this gesture the user needs to have
// a support table placing the other hand
// over the table to help the balance
GESTURE pendulum:
POSE stand-straight:
point your spine, neck and head up.

POSE lean-forward:
rotate your spine, neck and head
30 degrees to your front,
do not align your legs,
align your back.

POSE swing-forward:
point your left arm down,
rotate your left arm
30 degrees to your front.

POSE swing-back:
point your left arm down,
rotate your left arm
30 degrees to your back.

POSE swing-left:
point your left arm down,
rotate your left arm
30 degrees to your left.

POSE swing-right:
point your left arm down,
rotate your left arm
30 degrees to your right.

EXECUTION:
stand-straight,
lean-forward,
slowly swing-forward,
slowly swing-back,
slowly swing-left,
slowly swing-right,
slowly swing-forward,
slowly swing-left,
slowly swing-back,
slowly swing-right.

GESTURE crossover-left-arm-stretch:
POSE relax-arms:
point your left arm down,
point your right arm down.

POSE stretch:
rotate your left arm
90 degrees
counter clockwise
on the frontal plane,
touch your left elbow
with your right hand.

EXECUTION:
relax-arms,
slowly stretch and hold for 30 seconds.

GESTURE crossover-right-arm-stretch:
POSE stretch-reverse:

rotate your right arm
90 degrees counter
clockwise
on the frontal plane,

touch your
right elbow with your left hand.

EXECUTION:
relax-arms,

slowly stretch-reverse and hold for 30 seconds.

//GESTURE = MIRROR crossover-left-arm-stretch;

GESTURE passive-external-rotation:

POSE left-wrist-to-the-left:
point your elbows down,
point your wrists to your front,
rotate your left wrist
45 degrees counter
clockwise
on the horizontal plane.

POSE right-wrist-to-the-right:
point your elbows down,
point your wrists to your front,
rotate your right wrist
45 degrees
counter clockwise
on the horizontal plane.

EXECUTION:
left-wrist-to-the-left and hold for 30 seconds,
right-wrist-to-the-right and hold for 30 seconds,
left-wrist-to-the-left and hold for 30 seconds,
right-wrist-to-the-right and hold for 30 seconds.

GESTURE elbows-flexion:
POSE flex-left-elbow:
rotate your left wrist
180 degrees
clockwise
on the sagittal plane,
point your left elbow down.

POSE flex-right-elbow
rotate your

right wrist

180 degrees

clockwise

on the sagittal plane,
point your right elbow down.

EXECUTION:
relax-arms,
slowly flex-left-elbow and
hold for 2 seconds,
relax-arms,
slowly flex-right-elbow and
hold for 2 seconds.

GESTURE elbows-extension:
POSE stretch-arm-up:
point your left elbow up,
point your right arm up,
touch your right elbow
with your left hand,
align your spine.

POSE flex-arm-back:
point your elbows up,
point your right wrist back,
touch your right elbow
with your left hand,
align your spine.

EXECUTION:
stand-straight,
flex-arm-back,
slowly stretch-arm-up
and hold for 2 seconds,
slowly flex-arm-back.

GESTURE head-rolls:
POSE head-to-left:
point your head up,
rotate your head
20 degrees clockwise
on the frontal plane.

POSE head-to-right:
point your head up,
rotate your head 20 degrees
counter clockwise
on the frontal plane.

POSE head-to-front:
point your head up,
rotate your head 20 degrees
clockwise on the sagittal plane.

POSE head-to-back
point your head up,
rotate your head 20 degrees
counter clockwise
on the sagittal plane.

EXECUTION
head-to-front,
head-to-right and hold for 5 seconds,
head-to-front,

slowly head-to-left and hold for 5 seconds,

slowly head-to-back,
slowly head-to-right,
slowly head-to-front,
slowly head-to-left,
slowly head-to-back,
slowly head-to-right,
slowly head-to-front,
slowly head-to-left.

GESTURE standing-quadriceps-stretch:
POSE lift-ankle:
point your legs down,
rotate your right ankle
90 degrees to your back,
align your spine.

POSE catch-ankle:

touch your right ankle with your right hand,

align your spine.

POSE bend-leg:
touch your right ankle
with your right hand,
rotate your right ankle
156 degrees to up,
align your spine.

EXECUTION:
stand-straight,
lift-ankle,
catch-ankle,
slowly bend-leg and
hold for 30 seconds.

GESTURE half-squats:
POSE up-squat:
point your legs down,
point your arms to your front,
point your spine up.

POSE down-squat:
point your arms to your front,
rotate your knees
20 degrees to up,
point your spine up.

EXECUTION:
up-squat,
down-squat and
hold for 5 seconds,
up-squat,
down-squat and
hold for 5 seconds.

GESTURE shoulder-abduction:
POSE arm-down:
point your right arm down,
rotate your right arm
20 degrees to your right.

// poses as pure transformations
// from previous state
POSE rot-up:
rotate your right arm
20 degrees up.

POSE rot-down:
rotate your right arm
20 degrees down.

EXECUTION:
arm-down,
//using repetitions to get further
rot-up,
rot-up,

rot-up,
rot-up,
rot-up,
rot-down,
rot-down,
rot-down,
rot-down,
rot-down.

GESTURE shoulder-adduction:
POSE arm-down-add:
point your right arm down,
rotate your right arm
30 degrees to your front.

EXECUTION:
arm-down,
//using repetitions to get further
rot-up,
rot-up,
rot-up,
rot-up,
rot-up,
rot-down,
rot-down,
rot-down,
rot-down,
rot-down.

1177777777777 777777777777777777777777777777777771777777
// Initial Ballet gestures of the Cecchetti Method

// Gestures described based on the book

// Technical Manual and Dictionary of Classical Ballet
// By Gail Grant

// From Dover Publications

// This particular set can be found

// in the following picture:

// http://mysylph.files.wordpress.com/2013/05/

// cecchetti-port-de-bra. jpg

117777777777 77777777777777777777777777777777717717177777

APP ballet:

GESTURE first-position:
POSE stand-straight:
point your spine, neck and head up.

POSE point-feet-out:
point your right foot right,
point your left foot left.

POSE stretch-legs:
align your left leg,
align your right leg.

POSE low-arc-arms:
point your arms down,
rotate your elbows 15 degrees up,
rotate your left wrist
5 degrees to your right,
rotate your right wrist
5 degrees to your left.

EXECUTION:
stand-straight,
point-feet-out,
stretch-legs,
low-arc-arms.

GESTURE second-position:
POSE mid-arc-arms:
point your arms down,
rotate your elbows 30 degrees up,
rotate your wrists 20 degrees up.

POSE high-arc-arms:
point your arms down,
rotate your arms 70 degrees up.

POSE open-legs-frontal-plane:
point your legs down,
rotate your right leg

10 degrees to right,
rotate your left leg
10 degrees to left.

EXECUTION:
stand-straight,
point-feet-out,
stretch-legs,
open-legs-frontal-plane,
mid-arc-arms,
high-arc-arms.

GESTURE third-position:

POSE mid-arc-arms-to-right:
point your arms down,
rotate your right elbow

30 degrees up,
rotate your right wrist

20 degrees up,
rotate your left elbow

10 degrees to your left,
rotate your left wrist

10 degrees to your right.

EXECUTION:
stand-straight,
point-feet-out,
stretch-legs,
mid-arc-arms-to-right.

GESTURE fourth-position-en-avant:
POSE cross-legs-one-behind-the-other:
put your left ankle
behind your right ankle,
put your left ankle
to the right of your right ankle.

POSE high-arc-arms-to-right:
point your arms down,
rotate your right arm 70 degrees up,
rotate your left elbow 20 degrees to your left,
rotate your left wrist 25 degrees to your right.

EXECUTION:
stand-straight,
point-feet-out,
stretch-legs,
cross-legs-one-behind-the-other,
high-arc-arms-to-right.

GESTURE fourth-position-en-haunt:
POSE high-arc-arms-to-right-and-up:
point your right arm down,
rotate your right arm 70 degrees up,
point your left arm up,
rotate your left elbow 15 degrees to your left,
rotate your left wrist 5 degrees to your right.

EXECUTION:
stand-straight,
point-feet-out,
stretch-legs,
cross-legs-one-behind-the-other,
high-arc-arms-to-right-and-up.

GESTURE fifth-position-en-avant:
POSE inner-arc-arms:
point your arms down,
rotate your right elbow 20 degrees to your right,
rotate your right wrist 25 degrees to your left,
rotate your left elbow 20 degrees to your left,
rotate your left wrist 25 degrees to your right.

EXECUTION:
stand-straight,
point-feet-out,
stretch-legs,
inner-arc-arms.

GESTURE fifth-position-en-haunt:
POSE arc-arms-up:
point your arms up,
rotate your right elbow 15 degrees to your right,
rotate your right wrist 5 degrees to your left,
rotate your left elbow 15 degrees to your left,
rotate your left wrist 5 degrees to your right.

EXECUTION:
stand-straight,

21

point-feet-out,
stretch-legs,
arc-arms-up.

GESTURE a-la-quatrieme-devant:
POSE quatrieme-devant-legs:
put your right leg in front of your left leg,
point your left leg down,
point your left foot left.

EXECUTION:
stand-straight,
point-feet-out,
quatrieme-devant-legs,
high-arc-arms.

GESTURE a-la-quatrieme-derriere:
POSE quatrieme-derriere-legs:
put your right leg behind your left leg,
point your left leg down,
point your left foot left.

EXECUTION:
stand-straight,
point-feet-out,
quatrieme-derriere-legs,
high-arc-arms.

GESTURE a-la-seconde:
POSE seconde-legs:
point your legs down,
point your left foot left,
rotate your right leg 20 degrees to your right.

EXECUTION:
stand-straight,
point-feet-out,
seconde-legs,
high-arc-arms.

1111777777777 777
// Initial taichi gestures from the 24 form exercises

// Gestures described based on the book:

// Tai Chi for beginners and the 24 forms

// By Dr Paul Lam and Nancy Lake

// From limelightpress
[1117771117117717

// taichi
APP taichi-gestures:

GESTURE starting:

POSE stand-straight:
point your spine up,
point your neck up,
point your head up.

POSE starting-legs:
point your legs down,
rotate your right leg 20 degrees to your right,
rotate your left leg 20 degrees to your left,
point your feet to your front.

POSE starting-arms:
point your arms down.

POSE inhale-arms:
point your arms to your front.

POSE transition-arms:
point your wrists up,
rotate your wrists 20 degrees to your front,
rotate your left wrist 20 degrees to your right,
rotate your right wrist 20 degrees to your left.
//put your left wrist near to your left shoulder,
//put your right wrist near to your right shoulder.

POSE bend-your-knees-slightly:
do not align your left knee and your left ankle,
do not align your right knee and your left ankle.

POSE exhale-arms:
point your elbows down,

put your wrists below your elbows.

EXECUTION:

stand-straight,

slowly
slowly

bend-your-knees-slightly,
inhale-arms,

slowly transition-arms,
slowly exhale-arms.

GESTURE parting-the-wild-horses-mane:
POSE on-right-foot-facing-

front:

put your right hand above your left hand,

do not touch your right

hand with your left hand,

point your right leg down,
//put your weight on the right foot,
do not align your left leg.

POSE on-right-foot-facing-

do not align your right
align your left leg,
point your left foot to

POSE left-arm-arc-up:

left:
leg,

your left.

point your left arm to your front,

rotate your left arm 30

degrees to your left,

rotate your left elbow 30 degrees down,
rotate your left wrist 30 degrees up,
do not align your left arm.

POSE right-arm-face-down:

point your right arm down,

rotate your right wrist
rotate your right wrist
do not align your right

POSE left-bow-stance-legs:

point your legs down,

15 degrees to your front,
15 degrees to your right,
arm.

rotate your left knee 20 degrees to your front,
rotate your left knee 20 degrees to your left,
rotate your right leg 20 degrees to your right,

do not align your left leg,

do not align your right

POSE shift-weight-back:
point your legs down,
rotate your left leg 20
rotate your left leg 20
align your left leg,
do not align your right

POSE right-arm-low-arc:
point your right arm to

rotate your right elbow

POSE final-horse-mane:

leg.

degrees up,
degrees to your left,

leg.

your front,
30 degrees down.

put your right foot behind your left foot.

POSE white-crane-final:

//put your feet together,

put your left hand above your right hand,

do not touch your left hand with your right hand,
do not align your legs.

EXECUTION:

stand-straight,
//put-feet-under-shoulder,
slowly inhale-arms,

slowly exhale-arms,

slowly bend-your-knees-slightly,
on-right-foot-facing-front,
slowly on-right-foot-facing-left,
left-arm-arc-up,
right-arm-face-down,
left-bow-stance-legs,
right-arm-low-arc,
shift-weight-back,
final-horse-mane.

GESTURE white-crane-spread-wings:
POSE white-crane-start:

put your left hand above your right hand,

do not touch your left hand with your right hand,
do not align your legs,

put your right foot behind your left foot.

POSE white-crane-mid:

put your left hand to the right

of your right hand,
put your left hand above your right hand,
put your left hand behind your right hand,
do not align your legs,

22

point your left arm down,

rotate your left wrist 15 degrees to your front,
rotate your left wrist 15 degrees to your right,
do not align your left arm,

point your right arm to your right,

rotate your right elbow 20 degrees to your front,
rotate your right elbow 15 degrees down,

rotate your right wrist 90 degrees up,

do not align your legs,

put your right foot behind your left foot.

EXECUTION:

slowly white-crane-start,
slowly white-crane-mid,
slowly white-crane-final.

GESTURE brush-knee:
POSE brush-knee-1:

do not align your right leg,

do not align your left leg,

point your right arm to your front,

rotate your right elbow 30 degrees down,
point your left arm to your front,

rotate your left arm 20 degrees to your left,
rotate your left elbow 30 degrees down,
rotate your left wrist 30 degrees up.

POSE brush-knee-2:

do not align your right leg,

do not align your left leg,

point your right arm to your front,

rotate your right arm 20 degrees to your right,
rotate your right elbow 20 degrees down,

rotate your right wrist 20 degrees up,

touch your right elbow with your left hand.

POSE brush-knee-3:

point your left leg down,

rotate your left leg 15 degrees to your left,
rotate your left leg 15 degrees up,

align your left leg,

do not align your right leg,

point your right arm to your front,

rotate your right arm 30 degrees to your right,
rotate your right wrist 90 degrees up,

point your left arm down,

rotate your left arm 30 degrees up,

rotate your left arm 15 degrees to your left,
rotate your left wrist 5 degrees to your right,
do not align your left arm.

POSE brush-knee-4:

align your right leg,

do not align your left leg,

point your left leg down,

rotate your left knee 20 degrees to your front,
rotate your left knee 20 degrees to your left,
touch your left hip with your left hand,

do not align your left arm,

do not align your right arm,

point your right arm to your front,

rotate your right elbow 20 degrees down.

POSE brush-knee-5:

align your left leg,

do not align your right leg,

point your left arm to your front,

rotate your left arm 20 degrees to your left,
rotate your left elbow 20 degrees down,

rotate your left wrist 20 degrees up,

point your right arm to your front,

rotate your right arm 20 degrees to your right,
rotate your right elbow 40 degrees down,

rotate your right wrist 40 degrees up.

POSE brush-knee-6:

do not align your right leg,

do not align your left leg,

point your left arm to your front,

rotate your left arm 20 degrees to your left,
rotate your left elbow 20 degrees down,
rotate your left wrist 20 degrees up,

touch your left elbow with your right hand.

POSE brush-knee-7:

point your right arm down,

rotate your right arm 30 degrees up,

align your right arm,

point your left arm to your front,

rotate your left arm 30 degrees to your left,
rotate your left wrist 30 degrees up,

put your right foot in front of your left foot,
align your right leg,

do not align your left leg.

POSE brush-knee-8:

point your right arm down,

rotate your right wrist 5 degrees up,

do not align your right arm,

point your left arm to your front,

rotate your left elbow 30 degrees down,
put your left foot behind your right foot,
align your left leg,

do not align your right leg.

POSE brush-knee-9:

align your right leg,

do not align your left leg,

point your right arm to your front,

rotate your right arm 60 degrees down,

rotate your right arm 20 degrees to your right,
rotate your right wrist 5 degrees up,

do not align your right arm,

point your left arm to your front,

rotate your left elbow 30 degrees down,

rotate your left wrist 75 degrees up.

POSE brush-knee-10:

do not align your right leg,

do not align your left leg,

point your right arm to your front,

rotate your right arm 20 degrees to your right,
rotate your right elbow 20 degrees down,

rotate your right wrist 20 degrees up,

touch your right elbow with your left hand.

POSE brush-knee-11:

point your left leg down,

rotate your left leg 30 degrees to your left,
rotate your left leg 30 degrees to your fromnt,
align your left leg,

do not align your right leg,

point your left arm down,

rotate your left arm 30 degrees to your front,
rotate your left wrist 5 degrees up,

do not align your left arm,

point your right arm to your right,

rotate your right arm 20 degrees to your front,
rotate your right wrist 90 degrees up.

POSE brush-knee-12:

align your right leg,

do not align your left leg,

point your left leg down,

rotate your left knee 20 degrees to your front,
rotate your left knee 20 degrees to your left,
touch your left hip with your left hand,

do not align your left arm,

do not align your right arm,

point your right arm to your front,

rotate your right elbow 20 degrees down.

EXECUTION:

brush-knee-1,
brush-knee-2,
brush-knee-3,
brush-knee-4,
brush-knee-5,
brush-knee-6,
brush-knee-7,
brush-knee-8,
brush-knee-9,
brush-knee-10,
brush-knee-11,
brush-knee-12.

GESTURE brush-knee-manual-interpolation-11:
POSE brush-knee-1163:

do not align your right leg,

23

do not align your left leg,

point your right arm to your front,

rotate your right elbow 30 degrees down,

point your left arm to your front,

rotate your left arm 20 degrees to your left,

rotate your left elbow 30 degrees down,

rotate your left wrist 30 degrees up.
EXECUTION:

brush-knee-1,

brush-knee-2,

brush-knee-3,

brush-knee-4,

brush-knee-5,

brush-knee-6,

brush-knee-7,

brush-knee-8,

brush-knee-9,

brush-knee-10,

brush-knee-11.

GESTURE brush-knee-manual-interpolation-10:

POSE brush-knee-111:
do not align your right leg,
do not align your left leg,
point your right arm to your front,
rotate your right elbow 30 degrees down,
point your left arm to your front,
rotate your left arm 20 degrees to your left,
rotate your left elbow 30 degrees down,
rotate your left wrist 30 degrees up.

EXECUTION:
brush-knee-1,
brush-knee-2,
brush-knee-3,
brush-knee-4,
brush-knee-5,
brush-knee-6,
brush-knee-7,
brush-knee-8,
brush-knee-9,
brush-knee-10.

GESTURE brush-knee-manual-interpolation-9:

POSE brush-knee-1111:
do not align your right leg,
do not align your left leg,
point your right arm to your front,
rotate your right elbow 30 degrees down,
point your left arm to your front,
rotate your left arm 20 degrees to your left,
rotate your left elbow 30 degrees down,
rotate your left wrist 30 degrees up.

EXECUTION:
brush-knee-1,
brush-knee-2,
brush-knee-3,
brush-knee-4,
brush-knee-5,
brush-knee-6,
brush-knee-7,
brush-knee-8,
brush-knee-9.

GESTURE brush-knee-manual-interpolation-8:

POSE brush-knee-1245:
do not align your right leg,
do not align your left leg,
point your right arm to your front,
rotate your right elbow 30 degrees down,
point your left arm to your front,
rotate your left arm 20 degrees to your left,
rotate your left elbow 30 degrees down,
rotate your left wrist 30 degrees up.

EXECUTION:
brush-knee-1,
brush-knee-2,
brush-knee-3,
brush-knee-4,
brush-knee-5,
brush-knee-6,
brush-knee-7,
brush-knee-8.

GESTURE brush-knee-manual-interpolation-7:
POSE brush-knee-1211:

do not align your right leg,
do not align your left leg,
point your right arm to your front,
rotate your right elbow 30 degrees down,
point your left arm to your front,
rotate your left arm 20 degrees to your left,
rotate your left elbow 30 degrees down,
rotate your left wrist 30 degrees up.

EXECUTION:
brush-knee-1,
brush-knee-2,
brush-knee-3,
brush-knee-4,
brush-knee-5,
brush-knee-6,
brush-knee-7.

GESTURE brush-knee-manual-interpolation-6:
POSE brush-knee-1231875:

do not align your right leg,
do not align your left leg,
point your right arm to your front,
rotate your right elbow 30 degrees down,
point your left arm to your front,
rotate your left arm 20 degrees to your left,
rotate your left elbow 30 degrees down,
rotate your left wrist 30 degrees up.

EXECUTION:
brush-knee-1,
brush-knee-2,
brush-knee-3,
brush-knee-4,
brush-knee-5,
brush-knee-6.

GESTURE brush-knee-manual-interpolation-5:
POSE brush-knee-1224:

do not align your right leg,

do not align your left leg,

point your right arm to your front,

rotate your right elbow 30 degrees down,

point your left arm to your front,

rotate your left arm 20 degrees to your left,

rotate your left elbow 30 degrees down,

rotate your left wrist 30 degrees up.
EXECUTION:

brush-knee-1,

brush-knee-2,

brush-knee-3,

brush-knee-4,

brush-knee-5.

GESTURE brush-knee-manual-interpolation-4:

POSE brush-knee-12251:
do not align your right leg,
do not align your left leg,
point your right arm to your front,
rotate your right elbow 30 degrees down,
point your left arm to your front,
rotate your left arm 20 degrees to your left,
rotate your left elbow 30 degrees down,
rotate your left wrist 30 degrees up.
EXECUTION:
brush-knee-1,
brush-knee-2,
brush-knee-3,
brush-knee-4.

24

GESTURE brush-knee-manual-interpolation-3:
POSE brush-knee-1231:

do not align your right leg,
do not align your left leg,
point your right arm to your front,
rotate your right elbow 30 degrees down,
point your left arm to your front,
rotate your left arm 20 degrees to your left,
rotate your left elbow 30 degrees down,
rotate your left wrist 30 degrees up.

EXECUTION:
brush-knee-1,
brush-knee-2,
brush-knee-3.

GESTURE brush-knee-manual-interpolation-2:
POSE brush-knee-12132:
do not align your right leg,
do not align your left leg,
point your right arm to your front,
rotate your right elbow 30 degrees down,
point your left arm to your front,
rotate your left arm 20 degrees to your left,
rotate your left elbow 30 degrees down,
rotate your left wrist 30 degrees up.
EXECUTION:
brush-knee-1,
brush-knee-2.

GESTURE brush-knee-manual-interpolation-1:
POSE brush-knee-123321:

do not align your right leg,
do not align your left leg,
point your right arm to your front,
rotate your right elbow 30 degrees down,
point your left arm to your front,
rotate your left arm 20 degrees to your left,
rotate your left elbow 30 degrees down,
rotate your left wrist 30 degrees up.

EXECUTION:
brush-knee-1.

GESTURE play-the-lute:
POSE play-the-lutel:

put your left foot in front of your right foot,

do not align your left leg,

do not align your right leg,

point your right hand to your front,
rotate your right elbow 15 degrees down,
do not align your right arm,

point your left arm down,

rotate your left wrist 15 degrees to your front,

do not align your left arm.

POSE play-the-lute2:
align your left leg,
do not align your right leg,
point your left arm to your front,
rotate your left arm 20 degrees to your left,
rotate your left elbow 20 degrees down,
rotate your left wrist 20 degrees up,
point your right arm to your front,

rotate your right arm 20 degrees to your right,

rotate your right elbow 40 degrees down,
rotate your right wrist 40 degrees up.

EXECUTION:
play-the-lutel,
play-the-lute2.

